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Abstract

We describe a simple environment to study cooperation be-
tween two agents and a method of achieving cooperation in
that environment. The environment consists of randomly gen-
erated normal form games with uniformly distributed pay-
offs. Agents play multiple games against each other, each
game drawn independently from the random distribution. In
this environment cooperation is difficult. Tit-for-Tat can-
not be used because moves are not labeled as “cooperate”
or “defect”, fictitious play cannot be used because the agent
never sees the same game twice, and approaches suitable for
stochastic games cannot be used because the set of states is
not finite. Our agent identifies cooperative moves by assign-
ing an attitude to its opponent and to itself. The attitude de-
termines how much a player values its opponents payoff, i.e
how much the player is willing to deviate from strictly self-
interested behavior. To cooperate, our agent estimates the at-
titude of its opponent by observing its moves and reciprocates
by setting its own attitude accordingly. We show how the op-
ponent’s attitude can be estimated using a particle filter, even
when the opponent is changing its attitude.

Introduction
Cooperation plays an important role in evolution, but it is
difficult to explain how cooperation developed, since natural
selection favors defectors who take advantage of cooperators
without paying any cost. One of the mechanisms postulated
for evolution of cooperation is direct reciprocity (Trivers
1971), where in repeated encounters two individuals can
choose to cooperate or defect. This was formalized in the
Iterated Prisoner Dilemma (Axelrod 1984) and in the Tit-
for-Tat strategy, a strategy which starts with cooperationand
then reciprocates whatever the other player has done in the
previous round.

Cooperation can be valuable, but it can also be risky.
When should an agent cooperate? How can an agent avoid
exploitation? The risk of cooperation is that the opponent
may not work to pursue a collective good, but instead take
advantage of cooperative actions. This paper presents an en-
vironment where cooperation of agents is possible and ben-
eficial. A unique feature of the environment is that it does
not provide repeated exposure to a single game but only re-
peated interactions with the same player. The set of agents is
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limited (we are currently using just two agents), so an agent
has the opportunity to reciprocate the cooperative actionsof
the other agent. Each interaction is unique since the agents
play a different game each time.

As mentioned earlier, it is possible to achieve cooperation
in repeated games using Tit-for-Tat (Axelrod 1984) or vari-
ants such as win-stay lose-shift (Nowak & Sigmund 1993),
but Tit-for-Tat requires that moves are labeled as coopera-
tive or uncooperative. This is not suitable for agents that
operate in environments that are too large and complex to be
analyzed and labeled beforehand.

In order to create an environment suitable for cooperation
and general enough to be adaptable to different situations we
considered a number of criteria:

1. Cooperation must be possible. This excludes environ-
ments that consist of fixed-sum games where a gain for
one agent is necessarily a loss for the other.

2. Exploitation must be possible as well - if there is no dan-
ger of exploitation then methods of cooperation might
not guard against it, which would make them unsuitable
for environments in which exploitation is possible. This
excludes environments where agent’s interests are com-
pletely aligned, such as if their payoffs are identical.

3. The opportunity for reciprocation is necessary, because
reciprocation provides a way to cooperate without becom-
ing vulnerable to exploitation. This means that players
must interact multiple times.

4. The environment should have minimal constraints on in-
teractions between agents, so that methods of cooperation
will be suitable for a wide variety of environments.

We have tried to satisfy all these criteria by generating
each single interaction of two agents from a probability dis-
tribution over a large class of normal form games where
each normal form game is randomly generated and played
only once. Since each game is randomly generated, it is ex-
tremely unlikely that it will be a fixed sum game or that the
payoffs for each player will be equal. Cooperation in this
environment is possible, and so is exploitation. Since agents
play with each other multiple times, even though the game
is different every time, they have the opportunity to recip-
rocate their opponent’s cooperative or exploitative moves.
The problem of determining which moves are cooperative
and which are exploitative is left to the agents.



There are several desirable properties for agents in this
environment:

1. They should not be vulnerable to a hostile opponent.
Their payoff should not drop below the best payoff they
could achieve if their opponent had the sole goal of reduc-
ing their payoff.

2. They should be able to achieve cooperation. When play-
ing against another agent which is willing to cooperate
they should be able to jointly increase their payoffs.

3. They should not be vulnerable to exploitation. They
should only cooperate if their opponent is cooperating as
well. Unreciprocated cooperation over the short term is
reasonable (such as on the first move in Tit-for-Tat), but
if the opponent has a history of not cooperating an agent
should not continue to cooperate.

Our method of achieving cooperation is based on a param-
eter driven modification of the original game, where the pa-
rameters model the attitude of each agent towards the other
agent. For any given game, we construct a modified game
using the attitudes of both players and calculate its Nash
equilibrium. If both players have positive attitudes and play
the Nash equilibrium of the modified game, our experimen-
tal results show that their expected payoffs in the original
game is higher than if they had played a Nash equilibrium
of the original game. A Nash equilibrium is a pair of prob-
ability distributions over the moves of each agent. If both
agents play a Nash equilibrium then neither agent will have
an incentive to change from the Nash equilibrium.

This method of cooperation requires that an agent know
the attitude of its opponent. Since this information is gener-
ally not available and potentially not constant (an opponent
can change its attitude), we present an algorithm for an agent
to estimate its opponent’s attitude that allows it to chose its
own attitude accordingly. Note that for a particular game
there may be multiple Nash equilibria. Therefore our algo-
rithm is also capable of learning how its opponent chooses a
specific Nash equilibrium to play.

Related Work
Research in multi-agent systems has shown that when agents
cooperate the social welfare increases. We use the con-
cept of attitude to achieve cooperation. (Levine 1998;
Rabin 1993; Sally 2002) describe ways of using attitude to
explain the cooperation of people when playing certain types
of games. They include a sympathy factor to reflect the fact
that people prefer to cooperate with people who cooperate
with them. We have not taken sympathy into account in
our system, but we could model it by altering the prior over
the opponent attitude and its beliefs about the agent attitude.
Attitude is not the only way to explain cooperation. For in-
stance, (Altman, Bercovici-Boden, & Tennenholtz 2006)
present a method of predicting the behavior of human play-
ers in a game by using machine learning to examine their
previous behavior when playing different games. In (Saha,
Sen, & Dutta 2003) a mechanism is proposed where agents
base their decisions about whether or not to cooperate on
future expectations as well as past interactions.

Given a static environment, it is possible to learn how

to play using fictitious play (Fudenberg & Levine 1998),
but this approach does not produce cooperation, and it re-
quires repeated exposure to a single game. A stochastic
game (Shapley 1953) is a repeated set of games between
players where the payoffs of each game are determined by
the current state, and the outcome of each game affects
the subsequent state. A number of approaches have been
developed to learn stochastic games (e.g., (Shoham, Pow-
ers, & Grenager 2003)), but most focus on achieving the
best individual payoff and not on cooperation, and they re-
quire that the environment consist of a limited number of
states. Stochastic games represent a midpoint between re-
peated play of a single game and our environment, where a
game is never seen twice. Algorithms using reinforcement
learning for stochastic games only need to know the current
state and the payoff received in the previous state. A vari-
ation of Q-learning which can achieve cooperation in self
play while avoiding exploitation is described in (Crandall&
Goodrich 2005). In our environment agents need to know
their opponent’s payoffs because they do not have the abil-
ity to observe the opponent’s prior play for the current game;
the opponent’s payoffs are the only information agents can
use to try to predict their opponent’s play.

This paper does not discuss the problem of cooperation
in a single interaction. To design an agent that is capable
of cooperating in a single interaction it would be useful to
look at focal point theory (Kraus, Rosenschein, & Fenster
2000), which enables coordination between two agents with-
out communication.

Description

Environment

The environment we have chosen consists of repeated play
of randomly generated normal form games. After explor-
ing a number of alternatives, we have found that 16-move
normal form games with payoffs drawn from a uniform dis-
tribution between 0 and 1 provide opportunities for coopera-
tion without making cooperation the only reasonable choice.
Increasing the number of moves per agent causes the envi-
ronment to become too computationally expensive without
changing the nature of the game. Reducing the number of
moves per agent reduces opportunities for cooperation. We
have explored generating payoffs from a normal distribution,
but found that this also reduced the opportunities for coop-
eration. Running 1000 iterations allows sufficient time for
agents to adjust to the play of their opponent with a high de-
gree of accuracy. More details on the experiments we have
done are in (Damer & Gini 2008).

The sequence of play in our environment is as follows:

1. Generate a game by assigning each agent 16 moves, and
drawing a payoff for each agent for each combination of
moves from a uniform distribution from 0 to 1.

2. Allow both agents to observe the game and simultane-
ously select a strategy for the game which consists of a
probability distribution over possible moves.

3. Draw a move for each agent from the probability distribu-
tion that agent provided.



4. Award each agent the appropriate payoff for the pair of
moves chosen.

5. Inform each agent of the move chosen by its opponent.

This is a good environment in which to study coopera-
tion because agents’ interests are neither diametrically op-
posed nor identical, so cooperation is possible without being
mandatory. Agents in this environment must determine how
to cooperate on their own without any environmental cues,
and, because the games are randomly generated, they must
be able to cooperate in a wide variety of situations.

Attitude and Belief
We use a modification of the original game to achieve co-
operation. Each agent selects anattitudewhich reflects the
degree to which it is willing to sacrifice its own score to im-
prove its opponent’s score. An attitude is a real number, in
the range between -1 and 1. An attitude of 1 means that
the opponent’s payoff is valued as highly as the agent’s own
payoff. An attitude of 0 means that the agent is indifferent to
the opponent’s payoff. An attitude of -1 means that the agent
is only concerned with how well it does in comparison to its
opponent.

A modified game is created in which each agent’s payoff
is equal to its payoff from the original game plus its atti-
tude times the payoff of its opponent in the original game.
Given a gameG with payoff functionsgagent andgopp we
construct the modified gameG′ as follows:

g′agent = gagent + attagent ∗ gopp (1)

whereattagent indicates the attitude of the agent andgopp

indicates the payoff of its opponent.
When agents select their moves from the Nash equilibria

of the modified game and play those moves in the original
game the expected score of each agent improves. Figure 1
shows the effect of different combinations of attitudes on the
payoff of a player. When both agents adopt an attitude of1,
they can improve their average payoffs from.80 to .90. Even
when they only adopt an attitude of.2 their payoffs improve
to .87.

So far we have assumed that agents know the attitudes
of their opponents. Since this information is not generally
available, an agent needs to estimate the attitude of its oppo-
nent. We call the value an agent uses for an estimate of its
opponent’s attitude itsbelief. We have explored alternatives
such as assuming an indifferent opponent (belief is 0) or as-
suming a reciprocating opponent (belief is equal to agent’s
attitude) and found that those assumptions prevent effective
cooperation. If an agent assumes that its opponent is indif-
ferent, then it is actually worse off when its opponent adopts
a positive attitude.

To compute Nash equilibria we use the Lemke-Howson
algorithm as described in (McKelvey & McLennan 1996).
Note that in many games there can be multiple Nash equi-
libria. If agents play different Nash equilibria, or make false
assumptions about their opponent’s attitude, then they do not
achieve cooperation. Fortunately, we will show later that an
agent can learn what attitude and method of selecting Nash
equilibria is used by its opponent.
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Figure 1: Payoff of an agent is affected by the attitudes of
the agent and its opponent. These are aggregated results
over 1000 games with 16 moves per player and with payoffs
drawn from a uniform distribution between 0 and 1. The
results for a single game may be quite different.

Achieving Cooperation
Once an agent has arrived at an estimate of the attitude and
belief of its opponent, the question arises as to how it should
use that knowledge. A self-interested approach would be to
simply play the best response to the predicted strategy of the
opponent. However, just as in Prisoner’s Dilemma, a purely
self-interested approach will not result in the best payoffs.
To achieve cooperation while still avoiding exploitation,our
agent sets its own attitude equal to a reciprocation level plus
the attitude it has estimated for its opponent, with a maxi-
mum value of 1. The reciprocation can be quite low and still
produce cooperation. We have used a reciprocation level of
.1. If the opponent is not cooperative this will not lead to a
significant loss for the agent, but if the opponent reciprocates
in a similar way this will lead to full cooperation.

Learning Attitude and Belief
Since an agent cannot be trusted to honestly disclose its own
attitude, it is necessary to learn its attitude over repeated in-
teractions. Since an opponent’s behavior is strongly influ-
enced by its belief about the agent’s attitude, it is also neces-
sary to learn the opponent’s belief. This is difficult because
the only evidence available is the sequence of moves chosen
in previous games. In addition, an agent can change its atti-
tude and belief, perhaps in response to its perceptions of its
opponent’s attitude and belief.

The approach we propose uses Monte Carlo methods to
represent a probability distribution over values of attitude
and belief and methods of selecting a Nash equilibrium. We
model a probability distribution over attitude and belief val-
ues using a set of particles(p1 . . . pn), each of which has a
value for attitudepatt

i , beliefpbel
i , and a method of choosing

a Nash equilibriumpnash
i . Each particle’s combination of

attitude and belief is used to create a modified game from



an observed game, then its method of choosing a Nash equi-
librium is used to find a Nash equilibrium for the modified
game, which is then used to assign a probability to each
move of the game. Upon observing the move chosen by
the opponent, each particle is assigned a weight equal to the
probability it assigned to that move. Then the set of particles
is resampled with probability proportional to the weights as-
signed. This procedure is a variation on a particle filter (Aru-
lampalamet al. 2002).

Since resampling would otherwise lead to a concentration
of all the probability mass into a single particle, each of the
re-sampled particles is then perturbed by a small amount.
Particles are perturbed by adding a small amount of gaussian
noise topatt

i andpbel
i . The variance of the noise is set to 10%

of the error in the current estimate. Error is defined as the
Euclidean distance between the true attitude and belief of
the opponent and the estimated attitude and belief:

err =
√

(atttrue − attest)2 + (beltrue − belest)2 (2)

An agent does not have access to its true error, but the error
can be estimated by observing the probability assigned to
the opponent’s move using the agent’s current estimate of
attitude and belief.

Our agent estimates the error in its current estimate of at-
titude and belief by tracking a probability distribution over
fixed error levels{el|l ∈ 1..m}. The estimated error is the
sum of the error levels weighted by their probability. The in-
tuition behind this approach is that an accurate estimate will
make more accurate predictions of the opponent’s move, so
when the opponent’s actual choice of move is revealed, an
accurate estimate is more likely to have predicted that move
with a high probability. This allows us to use the probability
assigned to the opponent’s move as the basis for finding the
error in the current estimate. Upon observing a move that
was predicted with a particular probability, the probability
of each error level is updated based on the probability of
observing a move predicted with that probability given that
error level and the current estimated level of cooperation.

Cooperation is defined as the correlation between an
agents payoff and its opponent’s payoff in the modified game
which is given by:

coop =
att + bel

√
att2 + 1

√

bel2 + 1
(3)

It is necessary to take cooperation into account because
when the level of cooperation is low, the value of being un-
predictable is higher, so agents play distributions over larger
numbers of moves. Figure 2 shows how changes in the level
of cooperation affect the average estimated probability ofthe
observed move. Since our method of error estimation is de-
pendent on the estimated probability of the observed move,
it is clear that it is necessary to take the level of cooperation
into account.

We chose a set of error levels and divided the range of pos-
sible cooperation values[−1, 1] and predicted probability
values[0, 1] into discrete buckets. We populated a lookup ta-
ble by creating a large number of games, true attitude/belief
pairs, and estimated attitude/belief pairs, and observingthe
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Figure 2: This graph shows how varying the level of cooper-
ation affects the agent’s choices of probability distributions
over moves. With a high level of cooperation agents are
more likely to assign a high probability to a few moves. With
a low level of cooperation agents are more likely to assign a
lower probability to many moves. This reflects the fact that
unpredictability is more valuable when the opponent is not
cooperating.

frequency with which moves with various predicted proba-
bilities were observed. The lookup table has proven to be a
reasonable method of approximating the probability of ob-
serving a move with a given predicted probability, given an
estimated cooperation level and an error level.

Cooperative Agent Algorithm
1. Initialize

(a) Select values for parameters
i. n = Number of particles
ii. r = Reciprocation level

iii. fab = Perturbation factor for attitude and belief
iv. fnash = Perturbation factor for methods of picking

Nash equilibria
v. {el|l ∈ 1..m} = Set of error levels

vi. P (el) = Distribution over error levels
(b) Generate error estimation lookup tableT with t(j, k, l)

equal to the probability of observing a move with esti-
mated probabilityj given estimated cooperation levelk
and error levell, wherej is a discretization of the prob-
ability, k is a discretization of the cooperation level, and
l is an index into the set of error levels.

(c) Generate initial particle set{pi|i ∈ 1..n}, with attitude
patt

i and beliefpbel
i drawn from a normal distribution

with mean 0 and variance 1, and method of choosing
a Nash equilibriumpnash

i drawn from a uniform dis-
tribution over the set of possible starting parameters of
the Lemke-Howson algorithm.

2. Observe gameG
3. Pick Move

(a) Estimate opponent’s parameters



i. Estimate attitude of opponentattopp = 1

n

∑

i patt
i

ii. Estimate belief of opponentbelopp = 1

n

∑

i pbel
i

iii. Estimate opponent’s method of picking Nash equilib-
rium nashopp from the most frequent value ofpnash

i

(b) Set attitudeattagent = attopp + r
(c) Construct modified gameG′ using equation 1 and cal-

culate its Nash equilibriumne usingnashopp. ne con-
tains two probability distributions over movesneagent

andneopp which describe the mixed strategies adopted
by the agent and its opponent in that Nash equilibrium.

(d) Draw move fromneagent

4. Observe opponent movem
5. Update Model

(a) Update error estimate
i. Set attitudeattagent = belopp

ii. Construct modified gameG′ and find its Nash equi-
librium ne usingnashopp

iii. Set j = nem
opp, the probability assigned byneopp to

the move chosen by the opponent
iv. Calculate cooperation valuek of estimated attitude

and belief using equation 3
v. Update the probability of each error levell

P (el) = P (el) ∗ t(j, k, l)
vi. Normalize the distribution over error levels

vii. Estimate current level of error
err =

∑m

l=1
el ∗ P (el)

(b) Resample particles
i. Calculate the weight for each particle
A. Create modified gameG′ usingpatt

i andpbel
i and cal-

culate its Nash equilibriumne usingpnash
i

B. Set weight for particlepi to nem
opp

ii. Draw n particles from the current set of particles using
the calculated weights

(c) Perturb particles
i. Modify attitude of each particle

patt
i ∼ N(patt

i , err ∗ fab)
ii. Modify belief of each particle

pbel
i ∼ N(pbel

i , err ∗ fab)
iii. With probability err ∗ fnash draw a new method of

calculating Nash equilibria for each particle.

Evaluation
Figure 3 shows the speed at which our algorithm can learn
the attitude and belief used by a stationary agent. The
agent’s attitude and belief are randomly drawn from a Gaus-
sian distribution with mean 0 and standard deviation 1. To
choose a Nash equilibrium the agent uses a set of starting
parameters drawn from a uniform distribution over all val-
ues. The error level drops fairly rapidly, but tapers off as
it approaches zero. This is because less disconfirming ev-
idence is seen as the error level drops, so there are fewer
opportunities to learn. Note that 100% predictive accuracy
is not achieved despite a low level of error. This is because
agents that are not fully cooperative tend to use randomiza-
tion when picking their moves.

Figure 4 shows the speed at which our algorithm can
achieve cooperation in self play. Both agents are simulta-
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Figure 3: Efficiency with which an agent can learn a static
attitude and belief. The dotted line shows the accuracy of
the prediction in terms of the ratio between the estimated
probability of the opponent choosing its move and the actual
probability the opponent assigned to its move. Results are
aggregated over 100 runs. Agents had also to learn their
opponent’s choice of Nash equilibrium.
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Figure 4: Speed at which cooperation can be achieved in self
play. The solid line shows the level of cooperation, and the
dotted line shows the payoff achieved by the agents. Results
are aggregated over 100 runs. Agents had also to learn their
opponent’s choice of Nash equilibrium.

neously learning the attitude and belief of the other agent,
and then setting their own attitude equal to .1 greater than
the other agent’s attitude, with the constraint that their own
attitude must fall between 0 and 1.

Analysis of Proposed Approach
A limitation to the particle filter based approach to predict-
ing an opponent’s behavior is that it is only capable of learn-
ing a limited set of opponent strategies. It would be best if



an agent could learn the policy that its opponent is using to
determine a distribution over moves given the payoff matrix
for the game from the space of all possible policies. How-

ever, the space of all possible policies is△R2n
2

n ; the set of
all functions from games (R2n2

) onto probability distribu-
tions over moves (△n - then-dimensional simplex), where
n is the number of moves for each player. This space is
too large to learn efficiently, but it also contains many irra-
tional policies which can be eliminated from consideration.
For example, it includes the policy of always playing move
1 regardless of the payoffs. The set of policies considered
by our algorithm is much smaller than the set of all possi-
ble policies, but it includes cooperative policies as well as
policies which can avoid exploitation and defend against a
hostile opponent. Furthermore, the particle filter model is
easy to extend with other policies as they arise.

One important question in our approach is how to deter-
mine the level of perturbation applied to particles after re-
sampling. If the particles are perturbed too much, the system
will never converge to an accurate estimate due to the level
of noise introduced by the perturbation. On the other hand,
if the particles are not perturbed enough then the system will
converge extremely slowly because the level of perturbation
will not be sufficient to prevent all the probability mass from
being assigned to a single particle. Our system sets the level
of perturbation to a constant times the estimate of the cur-
rent level of error. There is no theoretical basis for this, but
in practice it has proven successful.

Because many games have multiple Nash equilibria our
algorithm must learn which method of selecting a Nash equi-
librium is used by the opponent. This is another very diffi-
cult problem, since the number of different ways of selecting
a Nash equilibrium is limited only by human ingenuity. We
have demonstrated our algorithm using a set of arbitrarily
chosen methods of finding Nash equilibria. We use a deter-
ministic algorithm to find Nash equilibria which can return
different equilibria depending on its starting parameters. We
use different values of the starting parameters to simulatethe
problem of learning how the opponent selects a Nash equi-
librium. The algorithm could easily be extended by includ-
ing other methods of selecting a unique Nash equilibrium
with whatever properties are desired.

Conclusions and Future Work
This paper describes a new environment to explore cooper-
ation among self-interested agents. It presents an approach
which can achieve cooperation in that environment, resists
exploitation, and adjusts to changing attitudes.

This particle-filter-based approach to learning opponent
strategies is easy to adapt to include any particular strategy,
but will fail to learn any strategy that it does not consider.
The size of the space of possible strategies and the large pro-
portion of irrational strategies in that space suggest thatit is
not useful to attempt to include every strategy.

The current algorithm requires prior knowledge of the dis-
tribution from which games are drawn. A generalization is
to develop an error estimator that does not require that prior
knowledge.
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