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Abstract. This work presents a novel procedure for computing (1) distances
between nodes of a weighted, undirected, graph, called the Euclidean Commute
Time Distance (ECTD), and (2) a subspace projection of the nodes of the graph
that preserves as much variance as possible, in terms of the ECTD – a principal
components analysis of the graph. It is based on a Markov-chain model of
random walk through the graph. The model assigns transition probabilities
to the links between nodes, so that a random walker can jump from node to
node. A quantity, called the average commute time, computes the average
time taken by a random walker for reaching node j when starting from node
i, and coming back to node i. The square root of this quantity, the ECTD,
is a distance measure between any two nodes, and has the nice property of
decreasing when the number of paths connecting two nodes increases and when
the “length” of any path decreases. The ECTD can be computed from the
pseudoinverse of the Laplacian matrix of the graph, which is a kernel. We
finally define the Principal Components Analysis (PCA) of a graph as the
subspace projection that preserves as much variance as possible, in terms of
the ECTD. This graph PCA has some interesting links with spectral graph
theory, in particular spectral clustering.

1. Introduction

This work introduces a general procedure allowing (1) to compute dissimilarities be-
tween nodes of a weighted, undirected, graph and (2) to represent the nodes of
the graph in an Euclidean space of reduced dimensionality. Computing dissimilarities
between pairs of nodes allows to determine the item that is most relevant (that is,
similar) to a given item and allows, for instance, to cluster them. We present an appli-
cation of this technique to collaborative filtering, with promising results, in a related
paper [31].

The procedure used to compute the dissimilarities is based on a Markov-chain
model. We define a random-walk model through the graph by assigning a transition
probability to each edge. Thus, a random walker can jump from node to node, and
each node therefore represents a state of the Markov model. From this Markov-chain



model, we then compute a quantity, m(j|i), called the average first-passage time

(see for instance [17]), which is the average number of steps needed by a random walker
for reaching state j for the first time, when starting from state i. The symmetrized
quantity, n(i, j) = m(j|i) + m(i|j), called the average commute time (see for
instance [14]), provides a distance measure between any pair of states/nodes. The fact
that this quantity is indeed a distance on a graph has been proved independently by
Klein & Randic [18] and Gobel & Jagers [14]. Moreover, we show that [n(i, j)]1/2,
which is also a distance between nodes, takes a remarkable form and will be referred
to as the Euclidean Commute Time Distance (ECTD). The ECTD can easily
be computed from the pseudoinverse of the Laplacian matrix of the graph, which is
shown to be a valid kernel.

These quantities have the nice property of decreasing when the number of paths
connecting the two nodes increases and when the “length” of any path decreases
(the communication is facilitated [11]). In short, two nodes are considered similar if
there are many short paths connecting them. On the contrary, the “shortest path”
(also called “geodesic” or “Dijkstra”) distance does not necessarily decrease when
connections between nodes are added, and thus does not capture the fact that strongly
connected nodes are at a smaller distance than weakly connected nodes. This fact
has already been recognized in the field of mathematical chemistry where there were
attempts to use the “commute time” distance instead of the “shortest path” distance
[18]. To our knowledge, while being interesting alternatives to the well-known “shortest
path” or “geodesic” distance on a graph [6], these quantities have not been exploited
as-is in the context of pattern recognition and machine learning. They have, however,
been indirectly used in the framework of spectral clustering as will be shown in Section
6. This work therefore provides a new interpretation for spectral clustering since we
will show that spectral clustering can be interpreted in terms of ECTD.

We further show that we can project the nodes space of the graph into an Euclidean
subspace that maximaly preserves ECTD among all linear subspace projections. This
subspace is optimal in the following sense: it keeps as much variance of the projected
data as possible (in terms of the ECTD). It is therefore an equivalent of principal
component analysis in terms of the ECTD; we call this technique the principal com-

ponents analysis of the graph.

In summary, this paper has five main contributions: (1) it suggests the use of the
average first-passage time and the ECTD between nodes of a graph as a useful pattern
recognition tool; (2) it shows that the average first-passage time and the ECTD can
be computed in terms of the pseudoinverse L+ of the Laplacian matrix of the graph,
from the definition of the average first-passage time; (3) it shows that L+ is a kernel
and could be used as such for SVM classification; (4) it introduces the PCA of a
graph which is a principal component analysis computed on the ECTD matrix; (5) it
provides an elegant interpretation of both spectral clustering and spectral embedding
in terms of random walks on a graph.

Section 2 introduces the random-walk model – a Markov chain model. Section 3
develops our dissimilarity measures as well as the iterative formulae to compute them.
Section 4 gives details for the computation of the average first-passage time and the av-
erage commute time from the Laplacian matrix of the graph. It also derives a number
of interesting properties of the Laplacian pseudoinverse. Section 5 introduces an eigen-
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vector decomposition of the pseudoinverse of the Laplacian matrix that maximizes the
variance of the projected data. It also shows that this pseudoinverse is a valid kernel.
Section 6 summarizes related work and develops some interesting relationships with
spectral clustering, among others. Section 7 is the conclusion.

2. A Markov-chain model of random walk on a graph

2.1. The Laplacian matrix of a weighted graph

Let us consider that we are given a weighted, undirected, graph, G, with symmetric
weights wij > 0 between every couple of nodes, i and j, which are linked by an edge
(say G has n nodes in total). The weight wij of the edge connecting node i and node
j should be set to some meaningful value, with the following convention: the more
important the relation between node i and node j, the larger the value of wij , and
consequently the easier the communication through the edge. Notice that we require
that the weights are both positive (wij > 0) and symmetric (wij = wji). The elements
aij of the adjacency matrix A of the graph are defined in a standard way as

aij =

{
wij if node i is connected to node j
0 otherwise

(2.1)

where A is symmetric. We also introduce the Laplacian matrix L of the graph, defined
in the usual manner: L = D − A, where D = diag(ai.) is the degree matrix, and
dii = [D]ii = ai. =

∑n
j=1

aij . Furthermore, the volume of the graph is defined as

VG = vol(G) =
∑n

i=1
dii =

∑n
i,j=1

aij .

We suppose that the graph has a single connected component; that is, any node
can be reached from any other node of the graph. In this case, L has rank n−1, where
n is the number of nodes [9]. If e is a column vector made of 1 (i.e., e = [1, 1, . . . , 1]T,
where T denotes the matrix transpose) and 0 is a column vector made of 0, Le = 0

and eTL = 0 hold: L is doubly centered. The null space of L is therefore the one-
dimensional space spanned by e. Moreover, one can easily show that L is symmetric
and positive semidefinite (see for instance [4] or [9]).

2.2. A random walk model on the graph

The Markov chain describing the sequence of nodes visited by a random walker is
called a random walk on a weighted graph (see for instance [14]). We associate a state
of the Markov chain to every node; we also define a random variable, s(t), representing
the state of the Markov model at time step t. If the random walker is in state i at time
t, we say s(t) = i. We define a random walk by the following single-step transition
probabilities P(s(t + 1) = j|s(t) = i) = aij/dii = pij .

In other words, to any state or node i, we associate a probability of jumping to
an adjacent node, s(t + 1) = j, which is proportional to the weight wij of the edge
connecting i and j. The transition probabilities only depend on the current state and
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not on the past ones (first-order Markov chain). Since the graph is connected, the
Markov chain is irreducible, that is, every state can be reached from any other state.

Now, if we denote the probability of being in state i at time t by xi(t) = P(s(t) = i)
and we define P as the transition matrix whose entries are pij = P(s(t+1) = j|s(t) =

i), we have P = D−1A and the evolution of the Markov chain is characterized by
{

x(0) = x0

x(t + 1) = PTx(t)
(2.2)

This provides the state probability distribution x(t) = [x1(t), x2(t), . . . , xn(t)]T at
time t once the initial probability distribution, x0, is known (see [5], [17], [26] for more
details).

3. Average first-passage time and average commute time

In this section, we review two basic quantities that can be computed from the definition
of the Markov chain, that is, from its probability transition matrix: the average first-
passage time and the average commute time.

The average first-passage time, m(k|i) is defined as the average number of
steps a random walker, starting in state i, will take to enter state k for the first
time [26]. More precisely, we define the minimum time until hitting state k as Tik =
min (t ≥ 0 | s(t) = k and s(0) = i) for one realization of the stochastic process. The
average first-passage time is the expectation of this quantity, when starting from state
i: m(k|i) = E [Tik|s(0) = i] = Ei [Tik]. The m(k|i) verify the following recurrence
relations (see for instance [26])





m(k|i) = 1 +

n∑

j=1

j 6=k

pij m(k|j), for i 6= k

m(k|k) = 0

(3.1)

These equations can be used in order to iteratively compute the average first-
passage times [26]. The meaning of these formulae is quite obvious: in order to go
from state i to state k, one has to go to any adjacent state j and proceed from there.

We now introduce a closely related quantity, the average commute time, n(i, j),
which is defined as the average number of steps a random walker, starting in state i,
will take before entering a given state j for the first time, and go back to i. That is,
n(i, j) = m(j|i) + m(i|j). Notice that, while n(i, j) is symmetric by definition, m(i|j)
is not.

As shown by several authors [14], [18], the average commute time is a distance
measure, since, for any states i, j, k: n(i, j) ≥ 0, n(i, j) = 0 if and only if i = j,
n(i, j) = n(j, i) and n(i, j) ≤ n(i, k) + n(k, j). In Section 4, we show that [n(i, j)]1/2,
which is also a distance on the graph, takes a remarkable form. Both the average
first-passage time and the average commute time provide dissimilarity measures on
any pairs i, j of nodes.
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4. Computation of the basic quantities by means of L+

Methods for computing these two quantities are based on matrix pseudoinverses or on
iterative procedures. If the matrices are too large, the computation by pseudoinverse
becomes untractable; in this case, one may use iterative techniques based on Equation
3.1 and on the sparseness of the probability transition matrix.

In this section, we will show how the average first-passage time and the average
commute time can be computed from Equation 3.1, by using the pseudoinverse of
the Laplacian matrix of the graph, which plays a fundamental role and has a number
of interesting properties. The developments in this section are inspired by the work
of Klein & Randic [18] which showed, based on an electrical equivalence (see last
paragraph of Section 6), that the effective resistance (which is equivalent to the average
commute time [8]) can be computed from the Laplacian matrix. We thus extend their
results by showing that the formula computing the average commute time can be
directly derived from 3.1, and by providing formulae for the average first-passage time
as well.

Let us denote by lij element i, j of the Laplacian matrix L; in other words, lij =
[L]ij . The Moore-Penrose pseudoinverse of L (see [1]) will be denoted by L+, with

elements l+ij = [L+]ij . In Appendix A, we prove some useful properties of L+.

In [31], we show1 that the computation of the average first-passage time in terms
of L+ can be obtained from Equation 3.1:

m(k|i) =

n∑

j=1

(
l+ij − l+ik − l+kj + l+kk

)
djj (4.1)

For n(i, j), we obtain from Equation 4.1:

n(i, j) = VG

(
l+ii + l+jj − 2l+ij

)
(4.2)

This formula has already been obtained by using the electrical equivalent of com-
mute times (the effective resistance) [18], [31]. If we further define ei as the ith column
of I, ei = [0

1
, . . . , 0

i−1

, 1
i
, 0
i+1

, . . . , 0
n
]T, Equation 4.2 can be rewritten in the form:

n(i, j) = VG (ei − ej)
TL+(ei − ej) (4.3)

where each node i is represented by a unit basis vector, ei, of the node space. We easily
observe that [n(i, j)]1/2 is a distance in the Euclidean space of the nodes of the graph
since L+ is positive semidefinite. As already mentioned, it will therefore be called the
Euclidean Commute Time Distance (ECTD).

5. The principal components analysis of a graph

In this section, we show that, based on the eigenvector decomposition, the nodes
vectors, ei, can be mapped into a new Euclidean space that preserves the ECTD, or
a subspace keeping as much variance as possible, in terms of ECTD.

1 We do not provide the proof here because it is both lengthy and technical.
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5.1. Transformation to an Euclidean space preserving the ECTD

Let us first show that the node vectors ei can be mapped into an Euclidean space that
preserves the ECTD. Indeed, every positive semidefinite matrix can be transformed
to a diagonal matrix, Λ = UTL+U, where U is an orthonormal matrix made of the
eigenvectors of L+, U = [u

1
,u2, . . . ,un−1,un = 0]: the column vectors uk are the

orthonormal eigenvectors of L+, uT
i uj = δij or UTU = I (see for instance [25]). The

diagonal matrix Λ contains the eigenvalues of L+ in decreasing order of importance.
Hence we have

n(i, j) = VG (ei − ej)
TL+(ei − ej) = VG (xi − xj)

TUTL+U(xi − xj)

= VG (xi − xj)
TΛ(xi − xj) = VG (xi − xj)

T(Λ1/2)TΛ1/2(xi − xj)

= VG (x′
i − x′

j)
T(x′

i − x′
j)

where we made the transformations

xi = UTei and x′
i = Λ1/2xi (5.1)

So, in this n-dimensional Euclidean space, the transformed node vectors, x′
i, are exactly

separated by ECTD. In Appendix B, we show that L+ is a kernel since it corresponds
to the matrix of the inner products of the x′

i. Moreover, one can easily show [31] that
the x′

i are centered (their center of gravity is 0):
∑n

i=1
x′

i = 0.

5.2. Approximate ECTD based on the projection in a subspace

However, the transformed space introduced in previous section has dimensionality n
(the graph order), which is untractable for most applications. We therefore define an
approximation of this transformation that preserves as much information as possible.

The so-called spectral (or eigenvector) decomposition of L+ is defined as (see any

textbook on linear algebra, for instance, [20]) L+ = UΛUT =
∑n−1

k=1
λk uku

T
k where

λ1 > λ2 > . . . > λn−1 > λn = 0 are the eigenvalues of L+. As in previous section, the
column vectors uk are the orthonormal eigenvectors of L+, uT

i uj = δij .

Suppose now that we compute the eigenvector expansion of L+ up to m < n −
1: L̃+ =

∑m
k=1

λk uku
T
k = ŨΛ̃ŨT where Ũ = [u

1
,u2, . . . ,um,0, . . . ,0] and Λ̃ =

diag[λ1, λ2, . . . , λm, 0, . . . , 0]. Let us compute the corresponding distance between nodes

i and j: ñ(i, j) = VG (ei − ej)
TL̃+(ei − ej).

By L̃+ = Ũ Λ̃ŨT and using the same reasoning as in previous section, we can
recompute the distance as follows: ñ(i, j) = VG (x̃′

i−x̃′
j)

T(x̃′
i−x̃′

j), where, this time, the

x̃′
i are column vectors containing zeroes from the m+1 position: x̃′ = [x̃′

1, x̃
′
2, . . . , x̃

′
m, 0,

. . . , 0]T. The transformation is therefore defined by

x̃i = ŨTei and x̃′
i = Λ̃1/2x̃i (5.2)

This subspace is an m-dimensional space where the commute time distances are
approximately preserved. A bound on this approximation is provided in [31]:

||n(i, j) − ñ(i, j)|| ≤ VG

∑n−1

k=m+1
λk.
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Now, we easily observe from (5.1) that if uk
i is coordinate i of eigenvector uk

([uk]i = uk
i ) corresponding to eigenvalue λk of L+, and if xi

k is coordinate k of vector
xi ([xi]k = xi

k), xi
k = uk

i holds. We thus have x′i
k =

√
λkuk

i where x′i
k is coordinate k

of vector x′
i ([x′

i]k = x′i
k ).

In other words, the first coordinate of the n node vectors, xi, i = 1 . . . n, corre-
sponding to the first axis (k = 1) of the transformed space, are x′1

1 , x′2
1 , . . . , x′n

1 ,
or

√
λ1u

1
1,
√

λ1u
1
2, . . . ,

√
λ1u

1
n. Thus, the first coordinate of these n node vectors is

simply the projection of the original node vectors, e1, e2, . . . , en, on the first eigen-
vector, u1, weighted by

√
λ1. More generally, coordinate k of the node vectors in the

transformed space is simply the projection of the original node vectors, e1, e2, . . . , en,
on uk, weighted by

√
λk. The idea is thus to discard the axes corresponding to the

smallest eigenvalues of L+.

5.3. Relations to principal components analysis

We will now show that this decomposition is similar to principal components analysis
in the sense that the projection has maximal variance among all the possible candidate
projections. If X′ denotes the data matrix containing the coordinates of the nodes in
the transformed space, x′T

i , on each row (see Appendix B), we easily deduce from (5.1)

that X′ = UΛ1/2.
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Fig. 5.1. One example of principal components analysis based on the ECTD. The
original graph (the weight of each edge is inversely proportional to 1/(its length)) is
shown on the left (a); its projection on the two first principal components is shown on
the right (b).

Now, it is well-known that the principal components analysis of a data matrix
X′ yields, as kth principal component, the eigenvector, vk, of (X′)TX′ (which is the

variance-covariancematrix, since the x′
i are centered). But (X′)T X′ = (UΛ1/2)TUΛ1/2

= Λ. Since Λ is a diagonal matrix, we deduce that the x′
i are already expressed in the

principal components coordinate system – the eigenvectors of (X′)TX′ are the basis
vectors of the transformed space. Thus, if x′i

k is coordinate k of vector x′
i, it corre-

sponds to the projection of node i on the kth principal component. The variance, in
terms of ECTD, of the nodes cloud on each principal component k is therefore λk.
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We thus conclude that this projection can be viewed as a principal components
analysis in the Euclidean space where the nodes are exactly separated by ECTD. This
decomposition therefore defines the projection of the node vectors that has maximal
variance (in terms of the ECTD) among all the possible candidate projections. An
exemple of PCA is provided in Figure 5.1. Notice that it can be shown that performing
a multidimensional scaling on the ECTD gives exactly the same results as the principal
components analysis.

Furthermore, since L and L+ both have rank (n − 1) and have the same set of

eigenvectors but inverse eigenvalues (if λl
i are the eigenvalues of L and λ+

i are the

eigenvalues of L+, λl
i = 1/λ+

i , for i 6= n; λl
n = λ+

n = 0; see Appendix A) we do not
need to explicitly compute the pseudoinverse of L in order to compute the projection.
We only need to compute the m smallest (except λl

n = 0 = λ+
n ) eigenvectors (that is,

with lowest eigenvalues) of L, which become the largest of L+.

6. Related work

There is a vast literature on spectral graph theory (see [9] for a monograph) and
several results about the Laplacian spectrum of (hyper-)graphs are summarized in [22,
23]. Spectral techniques have been applied in a wide variety of contexts including
high performance computing [28], image segmentation [33], web page ranking [27, 19],
information retrieval [10], RNA motif classification [13], data clustering [24, 37], and
dimensionality reduction [2].

In particular, spectral clustering refers to a collection of techniques that cluster
n data points using eigenvectors of a matrix derived from the n × n affinity matrix
W: wij = exp[−d2(xi,xj)/2σ2], where d(xi,xj) denotes the dissimilarity between the
points xi and xj , and σ is a free parameter (see [36] for a review). A common choice is
d2(xi,xj) = ||xi − xj ||2. An automatic procedure for determining σ so as to minimize
the cluster distortion is proposed in [24].

Spectral clustering is a graph-theoretic approach to clustering and the affinity ma-
trix precisely corresponds to the (weighted) adjacency matrix A defined in section 2.1.
In the context of image segmentation, Shi and Malik [33] introduced the normalized
cut (NCut) criterion to define an optimal bipartitioning of a graph:

Let {A, A} denotes a bipartition of the set of vertices V of a graph G (A 6= ∅,
A 6= ∅, A ∩ A = ∅ and A ∪ A = V ). The cut is the total weight of edges connecting
the two disjoint sets A and A : cut(A, A) =

∑
i∈A,j∈A wij . The NCut criterion aims at

finding the bipartition minimizing: NCut(A, A) = ((1/VA) + (1/VA)) cut(A, A) where
VA = vol(A) is the subgraph volume. This criterion seeks a balance between the
goal of clustering (finding tight clusters) and segmentation (finding well separated
clusters). A very similar notion of conductance φ(A, A) of a cut is presented in [29]:
φ(A, A) = cut(A, A)/ min(VA, VA). Finding the optimal NCut is NP-complete even
for a graph on a regular grid but an approximation can be found by computing the
eigenvalues of the normalized Laplacian D−1/2LD−1/2 = I − D−1/2AD−1/2 [33]. In
particular, the eigenvector associated to the second smallest eigenvalue (also known as
the algebraic connectivity or Fiedler value [12]) is used to bipartition the graph. Note
that the standard spectral graph partitioning uses the Laplacian matrix L (instead

8



of its normalized version). This corresponds to the minimization of the average cut
criterion: AverageCut(A, A) =

(
(1/|A|) + (1/|A|)

)
cut(A, A) where |A| is the graph

order. This last version is exactly similar to our method since we showed, in the pre-
vious section, that computing the largest eigenvalues/eigenvectors of L+ is equivalent
to computing the smallest non-trivial eigenvalues/eigenvectors of L.

Meila and Shi present links between spectral segmentation and Markov random
walks [21]. Their random walk model is identical to the one defined in Section 2
but different properties are stressed. It is shown in particular that NCut(A, A) =
pAA +pAA, where pAB denotes the probability of a random walk transiting from state
set A to state set B in one step, given the current state is in A and the random walk
is started according to the stationary distribution of the Markov chain.

An application of the same random walk model to partially labeled classification
is proposed in [35]. In this learning framework (also known as transductive learn-
ing), unlabeled examples provide information of the structure of the domain while
the class labels of a few examples are known. As for spectral clustering, each data
point is associated to a graph vertex, i.e. a state of the associated Markov chain.
The model assumes a uniform initial distribution and includes a distribution p(y|i) of
class label y given state i. p(y|i) can be estimated with EM or a margin-based crite-
rion. Classification of point k is performed so as to maximize the posterior probability
p(y|k) =

∑
i p(y|i)[Pr]ik, where Pr denotes power r of the transition matrix P. Thus

the classification of the example k depends on [Pr]ik, the probability that the Markov
process started from the state i given that it ended up in k after r steps. The value of r
is a parameter controlling the smoothness of the random walk representation. Another
work using the Laplacian spectrum for transductive learning is described in [15].

The random walk model presented in Section 2 defines the transition matrix P

of a Markov process from the adjacency (or affinity) matrix A as P = D−1A. Let
us mention that several alternative definitions of the Markov transition matrix are
proposed in [16], in the context of supervised or unsupervised classification.

Laplacian eigenmaps (also called spectral embedding) is a dimensionality reduction
procedure that has been proposed recently by Belkin and Niyogi [3]. The authors solve
the following related eigenproblem: Lu =λDu. The smallest eigenvalue is left out and
the other small eigenvalues are used for the embedding. This is the same embedding
that is computed with the spectral clustering algorithm from Shi and Malik [33]. As
noted in [36], an equivalent result can be obtained by renormalizing the adjacency

matrix: D−1/2AD−1/2 and computing the eigenvectors/eigenvalues of L instead. It
should be clear that, once more, this reduction technique is closely related to our
definition of the principal components analysis of a graph.

Smola and Kondor present connections between spectral graph theory and graph

kernels [34]. In particular, they define a graph regularization, which aims to emphasize
the role of the smallest non-trivial eivenvalues of L and, on the contrary, discard the
largest ones. Once more, this has interesting links with our definition of the PCA of a
graph, since the PCA discard the smallest nontrivial eivenvalues/eigenvectors of L+

(which, as already stressed, correspond to the largest of L). They also stress the links
between these techniques and web page ranking algorithms such as PageRank [27],
HITS [19] and randomized HITS [38].
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Finally, there is an intriguing correspondence between random walk on a graph
and electrical networks theory, as popularized by Doyle and Snell in their nice book
[11] (see also [4]). Average commute time has an equivalent in terms of electrical
networks. Indeed, in [8], it is shown that n(i, j) = VG re

ij , where re
ij is the effective

resistance between node i and node j. In other words, average commute time and
effective resistance basically measure the same quantity (see [31] for more details).

7. Conclusion and further work

We introduced a general procedure for computing dissimilarities between nodes of
a graph. It is based on a particular Markov-chain model of random walk through
the graph. More precisely, we compute a quantity, called the Euclidean Commute
Time Distance, that provides a distance measure between any pair of nodes. We also
introduced a subspace projection method preserving as much variance (in terms of
the ECTD) as possible; it therefore defines a principal components analysis on a
graph. We are now exploiting this ECTD in various problems, including inexact graph
matching, collaborative filtering [31], supervised classification and clustering. We are
also working on the definition of a discriminant analysis of a graph, with application
to graph vizualisation.
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Mathématique” of the Université catholique de Louvain, for insightful discussions.

A. Appendix: Some useful properties of the Laplacian matrix

(1) L+ is symmetric. Since L is symmetric and, for any matrix A, (AT)+ = (A+)T

(see [1]), we easily obtain L+ = (LT)+ = (L+)T. Therefore, L+ is symmetric.

(2) L is an EP-matrix. An EP matrix A is a matrix which commutes with its pseudoin-
verse, i.e. A+A = AA+. Since L is real symmetric, it is automatically an EP-matrix
(see [1], p.253). In particular, it is worth mentioning the following properties of EP-
matrices:

1. If (λl
i 6= 0,ui) are (eigenvalues, eigenvectors) of L, then (λ−1

i 6= 0,ui) are corre-

sponding (eigenvalues, eigenvectors) of L+. On the other hand, if (λl
j = 0,uj) are

(eigenvalues, eigenvectors) of L, then they are also (eigenvalues, eigenvectors) of
L+.

2. In particular, L+ has rank n − 1 and has the same null space as L: L+e = 0.
3. The previous property implies that L+ is doubly centered (the sum of the columns

and rows of L+ is zero), just as L (see also [30], chapter 10, for a discussion of this
topic).

4. Other properties of EP-matrices are described in [1] or [7].

(3) L+ is positive semidefinite. Indeed, from the previous property, the eigenvalues
of L and L+ have the same sign and L is positive semidefinite; therefore L+ is also
positive semidefinite.

B. Appendix: L+ is a kernel

In this section, we show that L+ is a kernel (see for instance [32]). Indeed, L+ is the
matrix containing the inner products of the transformed vectors x′

i:

x′T
i x′

j = (Λ1/2xi)
TΛ1/2xj = xT

i Λxj = eT
i UΛUTej = eT

i L+ej = l+ij

Thus, if X′ denotes the data matrix containing the coordinates of the nodes on each

row, X′ = [x′
1,x

′
2, ...,x

′
n]

T
, we have L+ = X′(X′)T with elements l+ij = x′T

i x′
j .
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