
Random-Walk Computation of Similarities
between Nodes of a Graph with Application

to Collaborative Recommendation
François Fouss, Alain Pirotte, Member, IEEE, Jean-Michel Renders, and

Marco Saerens, Member, IEEE

Abstract—This work presents a new perspective on characterizing the similarity between elements of a database or, more generally,

nodes of a weighted and undirected graph. It is based on a Markov-chain model of random walk through the database. More precisely,

we compute quantities (the average commute time, the pseudoinverse of the Laplacian matrix of the graph, etc.) that provide

similarities between any pair of nodes, having the nice property of increasing when the number of paths connecting those elements

increases and when the “length” of paths decreases. It turns out that the square root of the average commute time is a Euclidean

distance and that the pseudoinverse of the Laplacian matrix is a kernel matrix (its elements are inner products closely related to

commute times). A principal component analysis (PCA) of the graph is introduced for computing the subspace projection of the node

vectors in a manner that preserves as much variance as possible in terms of the Euclidean commute-time distance. This graph PCA

provides a nice interpretation to the “Fiedler vector,” widely used for graph partitioning. The model is evaluated on a collaborative-

recommendation task where suggestions are made about which movies people should watch based upon what they watched in the

past. Experimental results on the MovieLens database show that the Laplacian-based similarities perform well in comparison with

other methods. The model, which nicely fits into the so-called “statistical relational learning” framework, could also be used to compute

document or word similarities, and, more generally, it could be applied to machine-learning and pattern-recognition tasks involving a

relational database.

Index Terms—Graph analysis, graph and database mining, collaborative recommendation, graph kernels, spectral clustering, Fiedler

vector, proximity measures, statistical relational learning.

Ç

1 INTRODUCTION

EXPLOITING the graph structure of large repositories, such
as digital documents repositories, the Web environ-

ment, or large databases in general, is relevant to many
areas of computer science. For instance, Kleinberg’s
suggestion to emphasize Web pages that are hubs and
authorities (see [43]; called the HITS algorithm) has been
well received in the community (for a review, see [4]).

This work views a database as a collection of sets of
elements (tables) connected by relationships. The model
exploits the graph structure of the database to compute a
similarity measure between elements (the work could have
been presented as computing dissimilarities instead, and
the word “proximities” used as a substitute for either). All
the developments in this paper are valid in general for
computing similarities between nodes of a weighted and
undirected graph.

Computing similarities between pairs of elements allows
us, for instance, to determine the item that is most relevant

(or similar) to a given item. Also, elements in a set can be
assigned a category provided by elements from another set.
Computing similarities between elements of the same set
amounts to a clustering task.

For example, imagine a simple movie database with
three sets of elements (or tables), people, movie, and
movie_category, and two relationships has_watched,
between people and movie, and belongs_to, between
movie and movie_category.

. Computing similarities between people allows us to
cluster them into groups with similar interest about
watched movies.

. Computing similarities between people and movies
allows us to suggest movies to watch or not to
watch.

. Computing similarities between people and movie
categories allows us to attach a most relevant
category to each person.

The procedure used to compute similarities is based on a
Markov-chain model. We define a random walk through the
database by assigning a transition probability to each link.
Thus, a random walker can jump from element to element
and each element therefore represents a state of the Markov
chain. The average first-passage time mðkjiÞ (see, e.g., [41])
is the average number of steps needed by a random walker
for reaching state k for the first time, when starting from state
i. The symmetrized quantity nði; jÞ ¼ mðjjiÞ þmðijjÞ, called
the average commute time (see, e.g., [27]), provides a

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 3, MARCH 2007 355

. F. Fouss, A. Pirotte, and M. Saerens are with the ISYS Unit, IAG,
Université catholique de Louvain, Place des Doyens 1, B-1348 Louvain-la-
Neuve, Belgium.
E-mail: {francois.fouss, alain.pirotte, marco.saerens}@ucLouvain.be.

. J.-M. Renders is with the Learning and Content Analysis Group, Xerox
Research Center Europe, Chemin de Maupertuis 6, 38240 Meylan
(Grenoble) France. E-mail: jean-michel.renders@xrce.xerox.com.

Manuscript received 13 Jan. 2005; revised 27 Dec. 2005; accepted 9 Aug.
2006; published online 18 Jan. 2007.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0023-0105.

1041-4347/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

distance measure between any pair of states. The fact that
this quantity is indeed a distance on a graph was proved
independently by Klein and Randic [42] and Gobel and
Jagers [27].

We will see later that ½nði; jÞ�1=2, which is also a distance
between nodes, takes a remarkable form and is Euclidean; it
will be called the Euclidean Commute Time Distance
(ECTD). We also introduce the average first-passage cost
oðkjiÞ which generalizes the average first-passage time by
assigning a cost to each transition.

Another quantity of interest, closely related to the ECTD,
is the pseudoinverse of the Laplacian matrix of the graph
ðLþÞ. The elements of Lþ are the inner products of the node
vectors in a Euclidean space preserving the ECTD (i.e., a
Euclidean space where the nodes are exactly separated by
the ECTD). Lþ therefore provides a similarity measure
between nodes and it is a valid kernel (a Gram matrix, see,
e.g., [60]).

All these quantities have the nice property of decreasing
(or increasing, depending on whether the quantity is a
dissimilarity or a similarity measure) when the number of
paths connecting two elements increases and when the
“length” of any path decreases, that is, when communica-
tion is facilitated. In short, the more short paths connect two
given elements, the more similar those elements are. The
“shortest path” or “geodesic” distance does not have the
nice property of decreasing when connections between
nodes are added: It does not capture the fact that strongly
connected nodes are at a smaller distance than weakly
connected ones. With a few notable exceptions (see the
related work below), while being interesting alternatives to
the well-known “shortest-path” distance on a graph [11],
those quantities have not yet been fully exploited in the
context of collaborative recommendation or, more gener-
ally, in pattern recognition and machine learning. In
mathematical chemistry, on the other hand, attempts were
made to use the “commute-time” distance instead of the
“shortest-path” distance [42].

This paper is an extended and improved follow-up to
two earlier papers: [58], [25]. The former introduces our
theoretical model while the latter presents preliminary
experimental results obtained on the collaborative-recom-
mendation task. The present paper contains proofs of the
main results, a discussion of computational issues, and an
account of substantially expanded experiments.

1.1 Some Related Work

Chebotarev and Shamis already proposed in [15] and [17] a
similarity measure between nodes of a graph integrating
indirect paths, based on the matrix-forest theorem. Inter-
estingly, this quantity is also related to the Laplacian matrix
of the graph. While the authors prove some nice properties
about their similarity measure, no experiment investigating
its effectiveness was performed. We will therefore investi-
gate this matrix-forest-based measure, together with other
quantities, in Section 6.

Some authors recently considered similarity measures
based on random-walk models. For instance, Harel and
Koren [31] investigated the possibility of clustering data
according to some random-walk related quantities, such as
the probability of visiting a node before returning to the
starting node. They showed that their algorithm is able to
cluster arbitrary nonconvex shapes. White and Smyth [66],
independently of our work, investigated the use of the

average first-passage time as a similarity measure between
nodes. Their purpose was to generalize the random-walk
approach of Page et al. [51] by capturing a concept of
“relative centrality” of a given node with respect to some
other node of interest. On the other hand, Kondor and
Lafferty [44] as well as Smola and Kondor [64] defined a
graph regularization model which is closely related to the
graph PCA introduced in Section 5. This model could be
used in order to compute similarities between nodes, just as
any other graph kernel [61].

More recently, Newman [48] suggested a random-walk
model to compute a “betweenness centrality” of a given node
in a graph. This counts how often a node is traversed during a
random walk between two other nodes. Then, this quantity is
averaged over every pair of nodes, providing a general
measure of betweenness [65] associated to each node.

Still another approach has been investigated by Falout-
sos et al. [23] who extract the “most relevant” connected
subgraph relating two nodes of interest, using a method
based on electrical flows. In addition, Palmer and Faloutsos
[52] define a similarity function between categorical
attributes, called “refined escape probability,” based on
random walks and electrical networks. They show that this
quantity provides a reasonably good measure for clustering
and classifying categorical attributes. In a recent paper [47],
Nadler et al. proposed a similarity measure between nodes
of a graph based on a continuous-time diffusion process.
They show that there are some interesting links between
their model and our approach. We derived the discrete-time
counterpart of their model and we are currently investigat-
ing its performance [26].

Very recently, Brand [10] proposed various quantities
derived from the commute time for collaborative recom-
mendation. He shows, as we do, that angular-based
quantities perform much better than the commute time
because the latter is quite sensible to the node degree. Their
conclusions confirm our experimental results, as will be
shown in Section 6.

Our approach based on a random-walk model on a
graph is also closely related to spectral-clustering and
spectral-embedding techniques (for a recent account, see
[20]), as detailed in [58]. Random-walk models on a graph
also proved useful in the context of learning from labeled
and unlabeled data (see, e.g., [67]).

1.2 Main Contributions

In addition to suggesting quantities for computing
similarities between nodes of a graph, this paper has
four main contributions, three more theoretical and one
more experimental:

1. We show that all the introduced quantities can be
expressed in closed form in terms of the pseudoin-
verse of the Laplacian matrix of the graph. This
generalizes results obtained by Klein and Randic
[42], derived for the ECTD only, based on the
electrical equivalence. Since the pseudoinverse of
the Laplacian matrix plays a key role and has a nice
interpretation in terms of random walk on a graph,
we review some of its properties.

2. We show that the Moore-Penrose pseudoinverse of
the Laplacian matrix of the graph is a valid kernel (a
Gram matrix; see, for instance, [60]). It therefore
defines a kernel on a graph and can be interpreted as
a similarity measure.

356 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 3, MARCH 2007

3. We show that the node space of the graph can be
projected into a Euclidean subspace that approxi-
mately preserves the ECTD. This subspace is optimal
in the following sense: It keeps as much variance of
the projected data as possible (in terms of the ECTD).
It is therefore an equivalent of principal components
analysis (PCA) and classical multidimensional scal-
ing (MDS), in terms of the ECTD. This provides a
nice interpretation to the “Fiedler vector,” widely
used in graph partitioning. We also show that the
ECTD PCA can be viewed as a special regularized
Laplacian kernel, as introduced by Smola and
Kondor [64].

4. From an experimental point of view, we show that
these quantities can be used in the context of
collaborative recommendation [18], [32], [35]. In-
deed, all the introduced concepts are illustrated on a
collaborative-recommendation task where movies
are suggested for people to watch from a database
of previously watched movies. In particular, the
inner-product-based quantities involving the Lapla-
cian matrix provide good and stable results. We
suggest that the same model could be used to
compute document or word similarities, and, more
generally, be applied to other pattern-recognition
and machine-learning tasks involving a database.

We stress that our objective here is not to develop a state-
of-the-art collaborative-recommendation system; rather, the
application to collaborative recommendation aims to illus-
trate the usefulness of Markov-based similarity measures to
nontrivial database mining tasks. This approach fits quite
naturally into the so-called “multirelational data mining”
and the “statistical relational learning” frameworks (see, for
instance, [22] and other papers in the same issue of the
SIGKDD newsletter).

1.3 Outline of the Paper

The paper is structured as follows: Section 2 introduces the
random-walk model. Section 3 develops our similarity
measures as well as the iterative formulae to compute them.
Section 4 shows how the average first-passage time, the
average first-passage cost, and the average commute time
can be computed in closed form from the pseudoinverse of
the Laplacian matrix of the graph. Section 5 introduces a
subspace projection of the nodes of the graph that
maximizes the variance of the projected data and makes
the link with the Fiedler vector. Section 6 specifies our
experimental methodology and illustrates the concepts with
experimental results obtained on the MovieLens database.
Section 7 is the conclusion.

2 A MARKOV-CHAIN MODEL OF DATABASE

NAVIGATION

A weighted graph G is associated with a database in the
following obvious way: database elements correspond to
nodes of the graph and database links correspond to edges.
In our movie example, each element of the people, movie,
and movie_category sets corresponds to a node of the
graph, and each has_watched and belongs_to link is
expressed as an edge.

The weight wij of the edge connecting node i and node j
should be set to some meaningful value, with the following

convention: The more important the relation between
node i and node j, the larger the value of wij, and,
consequently, the easier the communication through the
edge. We require the weights to be both positive ðwij � 0Þ
and symmetric ðwij ¼ wjiÞ. For instance, for an has_

watched edge, the weight could be set to the number of
times that the person watched the corresponding movie.
The elements aij of the symmetric adjacency matrix A of the
graph are defined as usual as: aij ¼ wij if node i is
connected to node j and aij ¼ 0 otherwise.

Thus, people who watch the same kind of movies, and
therefore have similar taste, will be connected by a
comparatively larger number of short paths. On the
contrary, for people with different interests, there will be
fewer paths connecting them and these paths will be longer.

The Markov chain describing the sequence of nodes
visited by a random walker is called a random walk. A
random variable sðtÞ contains the current state of the
Markov chain at time t: If the random walker is in state i
at time t, then sðtÞ ¼ i. The random walk is defined with
the following single-step transition probabilities of jump-
ing from any state or node i ¼ sðtÞ to an adjacent node
j ¼ sðtþ 1Þ : Pðsðtþ 1Þ ¼ jjsðtÞ ¼ iÞ ¼ aij=ai: ¼ pij, where
ai: ¼

Pn
j¼1 aij.

The transition probabilities depend only on the current
state and not on the past ones (first-order Markov chain).
Since the graph is connected, the Markov chain is
irreducible, that is, every state can be reached from any
other state. If this is not the case, the Markov chain can be
decomposed into closed subsets of states which are
independent (there is no communication between them),
each closed subset being irreducible, and the procedure can
be applied independently on these closed subsets.

If we denote the probability of being in state i at time t by
�iðtÞ ¼ PðsðtÞ ¼ iÞ and we define P as the transition matrix
with entries pij ¼ Pðsðtþ 1Þ ¼ jjsðtÞ ¼ iÞ, the evolution of
the Markov chain is characterized by ��ðtþ 1Þ ¼ PT��ðtÞ,
with ��ð0Þ ¼ ��0 and where T is the matrix transpose.
This provides the state probability distribution ��ðtÞ ¼
½�1ðtÞ; �2ðtÞ; . . . ; �nðtÞ�T at time t once the initial distribution
��0 is known. For more details on Markov chains, the reader
is invited to consult standard textbooks (e.g., [41], [50]).

3 AVERAGE FIRST-PASSAGE TIME/COST AND

AVERAGE COMMUTE TIME

This section reviews two basic quantities that can be
computed from the definition of the Markov chain, that is,
from its transition probability matrix: the average first-
passage time and the average commute time. We also
introduce the average first-passage cost which generalizes
the average first-passage time. Relationships allowing us to
compute these quantities are just introduced without proof
(see, e.g., [41] or [50] for a more formal treatment).

The average first-passage time mðkjiÞ is defined as the
average number of steps that a random walker, starting in
state i 6¼ k, will take to enter state k for the first time [50].
More precisely, we define the minimum time until hitting
state k, when starting from state i, as Tik ¼ minðt � 0 j sðtÞ ¼
k and sð0Þ ¼ iÞ for one realization of the stochastic process.
The random walker will pass through k repeatedly; the

FOUSS ET AL.: RANDOM-WALK COMPUTATION OF SIMILARITIES BETWEEN NODES OF A GRAPH WITH APPLICATION TO... 357

minimum time corresponds to its first passage. The average
first-passage time is the expectation of this quantity:
mðkjiÞ ¼ E½Tikjsð0Þ ¼ i�.

In a similar way, the average first-passage cost oðkjiÞ is
the average cost incurred by the random walker starting
from state i to reach state k for the first time. The cost of
each transition is given by cðjjiÞ for any states i; j. Notice
that mðkjiÞ is a special case of oðkjiÞ obtained when
cðjjiÞ ¼ 1 for all i; j.

The recurrence relations for computing mðkjiÞ and oðkjiÞ
can easily be obtained by first-step analysis [41], [50], [57]:

mðkjkÞ ¼ 0

mðkjiÞ ¼ 1þ
Pn
j¼1

pij mðkjjÞ; for i 6¼ k;

8<
: ð1Þ

oðkjkÞ ¼ 0

oðkjiÞ ¼
Pn
j¼1

pij cðjjiÞ þ
Pn
j¼1

pij oðkjjÞ; for i 6¼ k:

8<
: ð2Þ

These formulae are quite obvious: To go from state i to
state k, first go to any adjacent state j and proceed from
there. These quantities can be computed by iterating these
recurrence relations, by using some dedicated algorithms
developed in the Markov-chain community (see, for
instance, [36], [41], [53]), or by using the pseudoinverse of
the Laplacian matrix of the graph, as shown in this paper
(see Section 4).

A closely related quantity, the average commute time
nði; jÞ is defined as the average number of steps that a
random walker, starting in state i 6¼ j, will take to enter
state j for the first time and go back to i. That is,
nði; jÞ ¼ mðjjiÞ þmðijjÞ. Notice that, while nði; jÞ is sym-
metric by definition, mðijjÞ is not.

As shown by [27], [42], the average commute time is a
distance measure since, for any states i, j, k:

1. nði; jÞ � 0,
2. nði; jÞ ¼ 0 if and only if i ¼ j,
3. nði; jÞ ¼ nðj; iÞ, and
4. nði; jÞ � nði; kÞ þ nðk; jÞ.

It will be referred to as the “commute-time distance.”
Because of a close relationship between the random-walk
model and electrical networks theory, this distance is also
called “resistance distance.” Indeed, nði; jÞ is proportional
to the effective resistance between node i and node j of the
corresponding network, where a resistance w�1

ij is assigned
to each edge [14]. We will show in Section 4 that ½nði; jÞ�1=2,
which is also a distance on the graph, takes a remarkable
form.

As already mentioned, the commute-time distance
between two nodes has the desirable property of decreasing
when the number of paths connecting the two nodes
increases and when the length of paths decreases (see [21]
for a proof based on electrical networks theory). This is
indeed an intuitively satisfying property of the effective
resistance of the equivalent electrical network [14], [21]. The
usual shortest-path distance (also called geodesic distance)
does not have this property: the shortest-path distance does
not capture the fact that strongly connected nodes are closer
than weakly connected nodes.

4 COMPUTATION OF THE BASIC QUANTITIES

WITH Lþ

In this section, we show how formulae for computing the
average first-passage time, the average first-passage cost,
and the average commute time can be derived from (1) and
(2), by using the Moore-Penrose pseudoinverse of the
Laplacian matrix of the graph (Lþ), which plays a
fundamental role and has a number of interesting proper-
ties. The developments in this section are inspired by the
work of Klein and Randic [42] who proved, based on the
electrical equivalence, that the effective resistance (equiva-
lent to the average commute time) can be computed from
the Laplacian matrix. We extend their results by showing
how the formula computing the average commute time in
terms of Lþ can be directly derived from (1), and by
providing formulae for the average first-passage time and
the average first-passage cost. We are currently investigat-
ing the relationships between these results and those
obtained by using the group generalized inverse, as
proposed by Meyer in [45].

4.1 The Pseudoinverse of the Laplacian Matrix

The symmetric Laplacian matrix L of the graph is defined in
the usual manner, L ¼ D�A, where D ¼ Diagðai:Þ with
dii ¼ ½D�ii ¼ ai: ¼

Pn
j¼1 aij, if there are n nodes in total. We

suppose that the graph is connected, that is, any node can
be reached from any other node. In this case, L has rank
n� 1 [19]. If e is a column vector made of 1s (i.e.,
e ¼ ½1; 1; . . . ; 1�T, where T denotes the matrix transpose)
and 0 is a column vector made of 0s, Le ¼ 0 and eTL ¼ 0T

hold: L is doubly centered. The null space of L is therefore
the one-dimensional space spanned by e. Moreover, one can
easily show that L is symmetric and positive semidefinite
(see, for instance, [19]).

The Moore-Penrose pseudoinverse of L (see, for
instance, [5]) will be denoted by Lþ, with elements
lþij ¼ ½Lþ�ij. The concept of pseudoinverse generalizes the
matrix inverse to matrices that are not of full rank or not
square. It provides closed-form solutions to systems of
linear equations for which there is no exact solution (in
which case it provides a solution in the least-square sense)
or when there is an infinity of solutions (in which case it
provides the solution closest to the origin). A thorough
treatment of matrix pseudoinverses and their applications
can be found in [8].

Appendix A reviews some useful properties of Lþ, in
particular, that:

1. Lþ is symmetric,
2. if ð�i 6¼ 0;uiÞ are (eigenvalues, eigenvectors) of L,

then ð��1
i 6¼ 0;uiÞ are corresponding (eigenvalues,

eigenvectors) of Lþ; if ð�j ¼ 0;ujÞ are (eigenvalues,
eigenvectors) of L, then they are also (eigenvalues,
eigenvectors) of Lþ,

3. Lþ is doubly centered, and
4. Lþ is positive semidefinite.

Moreover, it can be shown that Lþ can be computed with
the following formula (see [55], chapter 10):

Lþ ¼ L� eeT=n
� ��1þeeT=n; ð3Þ

where n is the number of nodes.

358 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 3, MARCH 2007

4.2 The Average First-Passage Time/Cost and
Average Commute Time

Appendix B shows that the average first-passage time and
the average first-passage cost can be computed in terms of
Lþ from (1) and (2). A similar formula (see Appendix C)
is derived for the average commute time, which is
repeated here

nði; jÞ ¼ VG lþii þ lþjj � 2lþij

� �
; ð4Þ

where VG is the volume of the graph ðVG ¼
Pn

k¼1 dkkÞ. This
formula was also obtained by using the electrical equivalent
of the average commute time (the effective resistance) in
[42]; see also [57].

If we define ei as the ith column of I,

ei ¼ ½0
1
; . . . ; 0

i�1
; 1
i
; 0
iþ1
; . . . ; 0

n
�T;

(4) takes the remarkable form

nði; jÞ ¼ VG ðei � ejÞTLþðei � ejÞ; ð5Þ

where each node i is represented by a unit vector ei (a node

vector) in the node space (the space spanned by feig).
We observe that ½nði; jÞ�1=2 is a distance in the Euclidean

space spanned by the node vectors of the graph since Lþ is
positive semidefinite. It is therefore Euclidean [28] because,
as will be shown later, the nodes can be embedded in an
Euclidean space exactly preserving the distances. This
distance will be called the Euclidean Commute-Time

Distance (ECTD). This is nothing else than a Mahalanobis

distance with a weighting matrix Lþ.

4.3 Computational Issues

As the number of nodes increases, the computations
directly based on the pseudoinverse eventually become
intractable; using iterative techniques, taking advantage of
the sparseness of the transition-probability matrix [30], [56],
is one alternative (based on (1) or (2)).

Another alternative that proved useful for computing Lþ

for large, sparse, graphs is based on a sparse Cholesky
factorization of the Laplacian matrix. First, observe that the
ith column of Lþ, lþi ¼ coliðLþÞ, can be obtained by the
following procedure (see [33, pp. 440-441]):

1. Compute the projection of the basis vector ei on the
column space of L: yi ¼ projLðeiÞ ¼ ðI� eeT=nÞei.

2. Find a solution l�þi of the equation Ll ¼ yi.
3. Project the result, l�þi , on the row space of L, lþi ¼

projLðl�þi Þ ¼ ðI� eeT=nÞl�þi (since L is symmetric,
its row space is equal to its column space).

It can be easily shown, based on the electrical equiva-
lence, that lþi represents the centered (summing to zero)
voltage at each node when 1) a unit current is injected in
node i and 2) a current 1=n is removed from every node
(eeT is a square matrix full of 1s).

The crux is to find one solution of Ll ¼ yi in step 2 by using

the Cholesky factorization. We first observe that, since the

columns of L are linearly dependent, one arbitrary element of

l, say the last one, can be set to zero: ln ¼ 0. The resulting set of

n equations is redundant (the rows of L and yi sum to zero),

and we can delete one of these equations, say the last one,

without change. The resulting system of equations is

equivalent to bLbl ¼ byi where bL is the Laplacian matrix from

which the last column and the last row have been deleted.

Similarly, bl and byi are obtained from the l and yi vectors,

respectively, by removing their last row. The ðn� 1Þ � ðn�
1Þmatrix bL, called the reduced Laplacian matrix, is full rank

and positive definite. A Cholesky factorization, bL ¼ RRT, is

performed. If bL is sparse, the lower-triangular factor R is

sparse as well, although less sparse than the original

matrix L. It is therefore useful to first compute a permutation

of the original adjacency matrix A in order to obtain a “band”

matrix. Once the factorization has been computed, one

solution of bLbl ¼ RRTbl ¼ byi, call itbl�þi , can easily be obtained

by back-substitution (R is lower-triangular and sparse). A

solution to Ll ¼ yi in step 2 is therefore ðl�þi Þ
T ¼ ½bl�þi ; 0�.

This procedure allows to compute the columns of Lþ “on
demand.” We were thus able to compute the elements of Lþ

for sparse graphs of about 150,000 nodes.
Still another viable approach, based on a truncated series

expansion, is proposed by Brand in [10]. Finally, the special
case of a bipartite graph (as the movie database) is
developed in [34], where the authors propose an optimized
method for computing the pseudoinverse of the Laplacian
matrix in this situation.

5 MAXIMUM VARIANCE SUBSPACE PROJECTION OF

THE NODE VECTORS

5.1 Mapping to a Euclidean Space Preserving
the ECTD

Based on the eigenvector decomposition of Lþ, the node
vectors ei can be mapped into a new Euclidean space that
preserves the ECTD (see Appendix D):

nði; jÞ ¼ VG ðx0i � x0jÞ
Tðx0i � x0jÞ ¼ VG kx0i � x0jk

2;

where we made the transformations ei ¼ Uxi (or xi ¼ UTei),
x0i ¼ �1=2xi, and where U is an orthonormal matrix made of
the eigenvectors of Lþ (ordered in decreasing order of
corresponding eigenvalue �k) and � ¼ Diagð�kÞ. In this new
n-dimensional Euclidean space, the transformed node

vectors x0i are exactly separated (according to the standard
Euclidean distance) by ECTD.

Appendix E shows that the x0i are centered and that the
elements of the pseudoinverse of the Laplacian matrix are
the inner products between these transformed node
vectors, lþij ¼ x0Ti x0j. Therefore, Lþ is a kernel matrix (a
Gram matrix) and can be considered as a similarity matrix

for the nodes (as in the vector-space model in information
retrieval). It therefore defines a new kernel on a graph, like
the von Neumann kernel [61], the diffusion kernel [44], and
the recently introduced regularized Laplacian kernel [37],
[64]. In fact, it can easily be shown that the Lþ kernel can be
obtained from the regularized Laplacian kernel by using a
special regularization operator (see the end of Section 5.2).
This result is worth mentioning since, once a meaningful
kernel has been defined on a graph, a number of interesting
measures come almost for free (kernel PCA, etc.; see, for

FOUSS ET AL.: RANDOM-WALK COMPUTATION OF SIMILARITIES BETWEEN NODES OF A GRAPH WITH APPLICATION TO... 359

instance, [60]). We are currently comparing various other
well-defined kernels on a graph on the same collaborative
recommendation task [26].

One key issue here is to assess which of the distance-

based measures (for instance, the ECTD) or the inner-

product-based measures (for instance, Lþ) perform best for
collaborative recommendation. It is well known that, for the
vector-space model of information retrieval, inner-product-
based measures outperform Euclidean distances when
computing proximities between documents [3]. In the
present case, ECTD are Euclidean distances, while Lþ

contains the inner products of node vectors. In this
framework, another measure of interest is the cosine of
node vectors, which is defined as

cosþði; jÞ ¼ lþij=
ffiffiffiffiffiffiffiffiffi
lþii l
þ
jj

q
: ð6Þ

5.2 Subspace Projection of the Node Vectors
(The Principal Component Analysis of a Graph)

Lþ can be approximated by retaining only the m < ðn� 1Þ
first eigenvectors (the smallest eigenvalue is 0) of its spectral
decomposition

eLþ ¼Xm
k¼1

�k uku
T
k ; ð7Þ

where the uk are the eigenvectors of Lþ and �k the
corresponding eigenvalues (see Appendix D for details).
A new transformation of the node vectors is therefore
defined by exi ¼ eUTei and ex0i ¼ e�1=2exi, where eU ¼
½u1;u2; . . . ;um;0; . . . ;0� and

e� ¼ Diag½�1; �2; . . . ; �m; 0; . . . ; 0�:

The ex0i are column vectors containing zeroes from position
mþ 1 on: ex0 ¼ ½ex01; ex02; . . . ; ex0m; 0; . . . ; 0�T. This subspace is
thus an m-dimensional space where the ECTD are approxi-
mately preserved. A bound on this approximation can
easily be derived, knði; jÞ � enði; jÞk � VG Pn�1

k¼mþ1 �k.
This decomposition is similar to Principal Component

Analysis (PCA) in the sense that the projection of the node
vectors in this subspace has maximal variance (in terms of
ECTD) among all the possible candidate projections (see
[58]; see also Appendix F). This is related, in a number of
interesting ways, with both spectral clustering (see, e.g., [62],
[20], and our work [58]), kernel PCA [60], and spectral
embedding [6], [7].

Moreover, it is easy to show that performing a multi-
dimensional scaling on the ECTD gives exactly the same
results as the PCA. Indeed, classical multidimensional
scaling [9] amounts to performing the spectral decomposi-
tion of the matrix given by �ð1=2ÞHNH, and to retaining
the first m eigenvalues and eigenvectors, where H is the
centering matrix ðH ¼ I� eeT=nÞ and N is the squared
ECTD matrix ð½N�ij ¼ nði; jÞÞ. It is not difficult to show that
�ð1=2ÞHNH is nothing else than Lþ (times VG), so that both
formulations are equivalent [9].

As for PCA, we expect that the first few principal
components contain most of the information about the basic
structure of the graph and that the remaining components
related to smaller eigenvalues represent noise. If this is true,

appropriate results are obtained by keeping only a few
components of the PCA. For example, keeping only two or
three components allows us to visualize the graph.

Both L and Lþ have rank ðn� 1Þ. They have the same set
of eigenvectors and inverse eigenvalues. Thus, we need not
explicitly compute the pseudoinverse of L in order to find
the projection. We need to compute only the m smallest
(except �n ¼ 0 ¼ �þn) eigenvectors (that is, with lowest
eigenvalue) of L, which are the largest of Lþ.

This result shows that the eLþ similarity matrix is a
regularized Laplacian kernel (as defined in [44]) with a
regularization factor given by rð�iÞ ¼ ��1

i for the smallest m
(nonnull) eigenvalues �i of L and rð�iÞ ¼ 0 for the
remaining eigenvalues. It trivially penalizes the largest
eigenvalues of L, by “cutting” them off in the regularized
Laplacian kernel.

Finally, notice that this graph PCA provides a nice
interpretation to the “Fiedler vector” [24], [46], widely used
for graph partitioning [13], [54]: The Fiedler vector simply
contains the projections of the node vectors on the first
principal component u1 of the graph. Indeed, the Fiedler
vector corresponds to the smallest nontrivial eigenvector of
the Laplacian matrix, which is also the first (with largest
eigenvalue) eigenvector u1 of Lþ.

6 EXPERIMENTS

6.1 Experimental Methodology

Remember that each element of the people and the movie
sets corresponds to a node of the graph. Each node of the
people set is connected by a link to each movie watched by
the corresponding person. Notice that, in this special case,
the graph is bipartite. The results shown here do not take
into account the numerical value of the ratings provided by
the persons but only the fact that a person has or has not
watched a movie (i.e., entries in the person-movie matrix
are 0s and 1s). Moreover, our experiments do not take the
movie_category set into account so that comparisons
between the various scoring algorithms remain fair. Indeed,
three standard scoring algorithms (i.e., maximum fre-
quency, cosine, and nearest-neighbor algorithms) cannot
naturally use the movie_category set to rank the movies.

6.1.1 Data Set

Our experiments were performed on a real movie database
from the Web-based recommender system MovieLens
(http://www.movielens.umn.edu). We used a sample of
their database as suggested in [59]: Enough people (i.e.,
943 people) were randomly selected to obtain 100,000 rat-
ings (considering only persons that had rated 20 or more
movies on a total of 1,682 movies).

A preliminary experiment was performed to tune the
parameters of the scoring algorithms (we do not show the
corresponding results in this paper), namely, parameter �
of the Katz method, the number of dimensions for PCA CT,
the similarity measure for the k nearest-neighbor algorithm,
and the number k of neighbors for each scoring algorithm
when using the indirect method (see Section 6.1.3). For this
preliminary experiment, the database was divided into a
training set and a test set. The test set contains

360 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 3, MARCH 2007

exactly 10 ratings for each of the 943 people (about
10,000 ratings), while the training set contains the
remaining ratings (about 90,000 ratings). Thus, each rating
belonging to the test set corresponds to a link that has
been removed from the graph build from the complete
database. The resulting pruned graph (without the links
belonging to the test set) is the training graph.

In the main experiment, the data set was divided into
n subsets (with n ¼ 10) and the scoring algorithm was
executed n times (n runs; n-fold cross-validation). In each
run, one of the n subsets was used as the test set while
the other n� 1 subsets were merged into a training set.
Then, the average result was computed on the n runs.
Notice that no link between a specific person and a specific
movie belongs both to the training set and to the test
set and that, for each person, the test set may contain
any number of movies.

For each person and each run, each scoring algorithm
described in Section 6.1.4 computes, based on the train-

ing set, a ranked list of preferences about movies,
expressed as similarities (scores) between people nodes
and movie nodes. From that information, we retain a
ranked list of all the movies that the person has not watched,
according to the training set (predictions).

6.1.2 Performance Evaluation

To evaluate the scoring algorithms described in Sec-
tion 6.1.4, we compared their performance using three
measures: 1) the degree of agreement (which is a variant of
Somers’D [63]), 2) a percentile score, and 3) a recall score.
The test set contains, for each person and each run, a set
of movies that the person has actually watched and that are
not linked to that person in the training set. Those
movies are part of the ranked list supplied by each scoring
algorithm from the training set.

Degree of agreement. To compute the degree of agree-
ment, we consider each pair of movies where one movie
(say, M1) is in the test set for that person (the movie has
actually been watched by that person) and the other movie
(say, M2) is not in the test set nor in the training set
for that person (the movie has not been watched by that
person). A scoring algorithm ranks the pair in the correct
order if, in the ranked list computed from the training

set, movie M1 precedes movie M2. The individual degree
of agreement is thus the percentage of pairs ranked in the
correct order with respect to the total number of pairs [63].
The idea here is that the scoring algorithm should favor the
movies that have indeed been watched by ranking them
before those that have not been watched.

The results discussed in the next section compute a
single global degree of agreement for all the persons by
averaging out the individual degrees of agreement. A
degree of agreement of 50 percent (50 percent of all the pairs
are in correct order and 50 percent are in bad order) is
equivalent to a random ranking. A degree of agreement of
100 percent means that the proposed ranking is identical to
the ideal ranking (watched movies ranked first).

Percentile. The individual percentile score is simply the
position (in percentages) that the median movie in the list
from the test set occupies in the whole list of ranked
movies computed from the training set. For instance, if
the test set contains three movies, ranked in 10th, 15th,
and 40th position, and there are 100 ranked movies in total,

the percentile score will be 15 percent. A random ranking
would provide a percentile score of about 50 percent. This
measure should be as low as possible for good performance
(near 0 percent for a perfect model). The global percentile
score is obtained by averaging the individual percentile
scores of all persons and all runs.

Recall. The recall score is the average (on all persons) of
the proportion (in percentages) of movies from the test

set that appear among the top n of the ranked list from the
training set, for some given n. This measure should be
as high as possible for good performance. A recall score of
100 percent indicates that the scoring algorithm always
positioned the movies in the test set among the top n of
the ranked list. We computed the recall for the top 10 and
the top 20 movies (for a total of 1,682 movies).

6.1.3 Direct Method versus Indirect Method for

Recommendation

We have used three methods to determine which movies to
suggest to a particular person, based on similarities
between pairs of nodes:

Direct method. Use each scoring algorithm to compute
the similarities between a given person and all the movies.
Movies are simply presented in decreasing order of the
similarity values.

User-based indirect method. First, use each scoring
algorithm as in the direct method to compute the simila-
rities (denoted simðp0; pÞ) between a given person p0 and all
the other persons p; then, for p0, compute from its k nearest
neighbors (in the present case, nearest neighbors are
persons) the predicted value (or preference) of each movie.
The predicted value of movie m0 for person p0 is computed
as a sum, weighted by simðp0; pÞ, of the values of the link
weight (0 or 1 here) of movie m0 with the k persons p closest
(according to simðp0; pÞ) to person p0:

predðp0;m0Þ ¼
Pk

p¼1 simðp0; pÞ apm0Pk
p¼1 simðp0; pÞ

; ð8Þ

where apm0
is 1 if person p watched movie m0 and 0

otherwise. The sum is taken on the k nearest neighbors of
p0. The higher the predicted value predðp0;m0Þ, the stronger
the recommendation that person p0 should watch movie m0.
For each scoring algorithm, we systematically varied the
number k of neighbors ð1; 2; . . . ; 10; 20; . . . ; 100Þ and we kept
the value of k providing the best result. Notice that the
value of k depends on the measure used to evaluate the
performance (see Section 6.1.2).

Movie-based indirect method. This corresponds to the
methodology proposed by Karypis in its SUGGEST
approach [39]. First, use each scoring algorithm as in the
direct method to compute the similarities (denoted
simðm0;mÞ) between a given movie m0 and all the other
movies m (in the present case, nearest neighbors are movies);
then, for a given person p0, compute from the k nearest
neighbors of the movies watched by p0 the predicted value
of each movie. The predicted value of movie m0 for person
p0 is computed as a sum, weighted by simðm0;mÞ, of the
values of the link weight (0 or 1) of person p0 with the
k nearest movies m of movie m0:

FOUSS ET AL.: RANDOM-WALK COMPUTATION OF SIMILARITIES BETWEEN NODES OF A GRAPH WITH APPLICATION TO... 361

predðp0;m0Þ ¼
Pk

m¼1 simðm0;mÞ ap0mPk
m¼1 simðm0;mÞ

; ð9Þ

where ap0m is defined as before. The movies are proposed to
person p0 in decreasing order of predicted values. As for the
user-based indirect method, we optimized the number of
neighbors. This way to suggest movies is equivalent to the
SUGGEST method proposed in [39]. Notice that, if the
algorithm provides a dissimilarity measure disði; jÞ, we use
ðmax�disði; jÞÞ=ðmax�minÞ to convert it into a similarity
measure.

6.1.4 Scoring Algorithms

Twelve scoring, or ranking, algorithms are compared. The
person-independent maximum-frequency algorithm
(MaxF) will serve as a reference to appreciate the quality
of the other scoring algorithms. Six scoring algorithms are
based on our random-walk model: the average commute
time (normal and PCA-based), the average first-passage
time (one-way and return; see later), and the pseudoinverse
of the Laplacian matrix (normal and cosþ). The other
algorithms are standard techniques: simple k-nearest
neighbors techniques, cosine coefficient, Katz’ method,
and the shortest-path algorithm. We also include the
matrix-forest-based similarity measure proposed in [15].
We now describe these algorithms in more detail.

Maximum-frequency (MaxF). This scoring algorithm
simply ranks the movies by the number of persons who
watched them. In other words, movies are suggested to
each person in order of decreasing popularity. The ranking
is thus the same for all the persons. MaxF is equivalent to
basing the decision only on the a priori probabilities in
supervised classification. Notice that MaxF can only be used
in the direct method.

Average commute time (CT). We use the average
commute time nði; jÞ to rank the elements of the considered
set, where i and j are elements of the database. For instance,
if we want to suggest movies to people using the direct
method, we compute the average commute time between
people elements and movie elements. The lower the value
is, the more similar the two elements are. In the sequel, this
quantity will simply be referred to as “commute time.”

Principal component analysis based on ECTD (PCA CT).
In Section 5, we showed that, based on the eigenvector
decomposition of Lþ, the nodes can be mapped into a new
Euclidean space (with more than 2,600 dimensions in this
case) that preserves the ECTD, or a m-dimensional subspace
keeping as much variance as possible, in terms of ECTD.

Thus, after performing a PCA and keeping a given
number of principal components, we recompute the
distances in this reduced subspace. These approximate
ECTD between people and movies are then used to rank the
movies for each person. We varied the dimension m of the
subspace from 10 to 2,620 by a step of 10. The best results
were obtained for 60 principal components ðm ¼ 60Þ.

Average first-passage time (One-way). In a similar way,
we use the average first-passage time mðijjÞ, to compute a
similarity score between element i and element j of the
database. This quantity will simply be referred to as “one-
way time.”

Average first-passage time (Return). As a similarity
between element i and element j of the database, this
scoring algorithm uses mðjjiÞ (the transpose of mðijjÞ), that

is, the average time needed to reach j when starting from i.
This quantity will simply be referred to as “return time.”

Pseudoinverse of the Laplacian matrix. (Lþ). Lþ pro-
vides a similarity measure ðsimði; jÞ ¼ lþijÞ since it is the
matrix containing the inner products of the node vectors in
the Euclidean space where the nodes are exactly separated
by the ECTD. Once we have computed the similarity
matrix, movies are ranked according to their similarity with
the person. In addition, we used the same procedure as for
the “PCA CT,” rely on the principal components analysis
subspace. Since we did not observe any improvement in
comparison with Lþ, we do not show the results here.

Cosine based on Lþ ðccosþÞ. This scoring algorithm
computes similarities from (6) to rank the movies.

k-nearestnearest neighbors (kNN). This scoring algorithm can
be represented by the following rule: To classify a new item,
choose the most frequent class of the k-nearest examples in
the training set as measured by a similarity coefficient.
Using a nearest-neighbor technique requires a measure of
“closeness” or “similarity.” The choice of a similarity
measure (see [38]) includes to consider the nature of the
variables (discrete, continuous, and binary), the scales of
measurement (nominal, ordinal, interval, and ratio), and
specific knowledge about the subject matter.

We now detail the procedure used for performing a
k-nearest neighbors in the user-based indirect method (see
Section 6.1.3). The procedure used for performing a
k-nearest neighbors in the movie-based indirect method is
similar and does not require further explanations. In the
case of our movie database, pairs of items are compared
on the basis of the presence or absence of certain features,
i.e., watching a particular movie. The presence or absence
of a feature is described mathematically by using a binary
variable, which takes the value 1 if the feature is present
(i.e., if person i has watched movie j) and the value 0 if
the feature is absent (i.e., if person i has not watched
movie j). More precisely, each person i is characterized
by a binary vector vi encoding the movies that that
person watched. The dimension of this vector is equal to
the number of movies. The k-nearest neighbors of person
i are computed by taking the k nearest vj according to a
given similarity measure s between binary vectors,
simði; jÞ ¼ sðvi;vjÞ. We performed systematic compari-
sons (preliminary experiment) between eight different
such measures s (listed in [38, p. 674]) and for different
values of k ð¼ 1; 2; . . . ; 10; 20; . . . ; 100Þ. The best scores (for
all the performance measures) were obtained with the “a
ratio of 1-1 matches to mismatches.” Notice that the
k-nearest neighbors is an indirect method that cannot be
used in the direct way.

Cosine coefficient (Cosine). The cosine coefficient be-
tween persons i and j, which measures the strength and the
direction of a linear relationship between two variables, is
defined by simði; jÞ ¼ cosineði; jÞ ¼ ðviTvjÞ=ðkvik kvjkÞ. We
again systematically varied the number k of neighbors
ð¼ 1; 2; . . . ; 10; 20; . . . ; 100Þ. The cosine coefficient algorithm
is also an indirect method that cannot be used in the direct
method.

Katz (Katz). This similarity index has been proposed in
the social sciences field and has been recently rediscovered
in the context of collaborative recommendation [35] and
kernel methods, where it is known as the von Neumann
kernel [60]. Katz proposed in [40] a method of computing
similarities, taking into account not only the number of

362 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 3, MARCH 2007

direct links between items but, also, the number of indirect
links (going through intermediaries) between items. The
similarity matrix is

K ¼ �Aþ �2A2 þ . . .þ �nAn þ . . . ¼ ðI� �AÞ�1 � I;

ð10Þ

where A is the adjacency matrix and � is a positive constant
which has the force of a probability of effectiveness of a
single link (simði; jÞ ¼ kij ¼ ½K�ij). A n-step chain or path,
then, has a probability �n of being effective. In this sense, �
actually measures the attenuation in a link, � ¼ 0 corre-
sponding to complete attenuation and � ¼ 1 to absence of
any attenuation. For the series to be convergent, � must be
less than the inverse of the spectral radius of A.

For the experiment, we systematically varied (prelimin-
ary experiment) the value of � ð� ¼ ð0:05; 0:10; . . . ; 0:95Þ �
ðspectral radiusÞ�1Þ and we present only the results obtained
by the best model (namely, � ¼ 0:05 � ðspectral radiusÞ�1).

Matrix-forest-based algorithm (MFA). The similarity
matrix introduced by Chebotarev and Shamis in [15], [17] is

T ¼ ðIþ LÞ�1; ð11Þ

where L is the Laplacian matrix. This similarity measure
has an interesting interpretation in terms of the matrix-
forest theorem [15], [17]. Suppose that FiðGÞ ¼ Fi is the set
of all spanning forests rooted on node i of graph G, and
FijðGÞ ¼ Fij is the set of those spanning rooted forests for
which nodes i and j belong to the same tree rooted at i. A
spanning rooted forest is an acyclic subgraph of G that has
the same nodes set as G and one marked node (a root) in
each component. It is shown in [15], [17] that the matrix
ðIþ LÞ�1 exists and that ½ðIþ LÞ�1�ij ¼ �ðFijÞ=�ðFiÞ, where
�ðFijÞ and �ðFiÞ are the total weights of forests that belong
to Fij and Fi, respectively. The elements of this matrix are
therefore called “relative forest accessibilities” between
nodes. It can be shown that this matrix is a similarity
measure ðsimði; jÞ ¼ tij ¼ ½T�ijÞ, having the natural proper-
ties of a similarity (triangular property for similarities,
among others [16]). It has recently been rediscovered and
used in the context of documents ranking [37]. It is clear
that this similarity measure is closely related to Lþ. Indeed,
ðIþ LÞ�1 and Lþ have the same set of eigenvectors, and
their eigenvalues are related by �MFA

i ¼ �Lþ

i =ð1þ �Lþ

i Þ.
Shortest-path algorithm (Dijkstra). This algorithm

solves a shortest-path problem for a directed and connected
graph with nonnegative edge weights. As a distance
between two elements of the database, we compute the
shortest-path between these two elements. We do not show
in the sequel the results of the shortest path algorithm.
Indeed, it seems that, for example, using the direct method,
nearly each movie can be reached from any person with a
shortest-path distance of 3. The degree of agreement is
therefore close to 50 percent because of the large number of
ties, and the detailed results are of little interest.

6.2 Cross-Validation Results

Thus, for each run of the cross-validation and for each
person, we first select the movies that have not been
watched, according to the training set. Then, we rank
them according to all the described scoring algorithms and
the methods to use them (direct, user-based indirect, or

movie-based indirect method). We compare the proposed
ranking with the test set (if the ranking procedure
performs well, we expect watched movies belonging to the
test set to be on top of the list) by using the three
measures of performance.

6.2.1 Results and Discussion

All the results are summarized in Table 1, which shows the
three performance measures: the degree of agreement
(Agreement), the percentile score (Percentile), and the
recall, considering either the top 10 of the ranked list
(Recall 10) or the top 20 of the ranked list (Recall 20). The
standard deviation of the results (STD) across the 10 cross-
validation runs is also reported, as well as the optimal
number of neighbors (Neighbors), when applicable.

Table 1 shows that, when using the direct method to
rank the movies for each user, the best results are obtained
by Lþ, cosþ , and MFA. Notice that we use a paired t-test to
determine if there is a significant difference (with a p-value
smaller than 0.01) between the results of the various scoring
algorithms. The best results, for each measure of perfor-
mance and for each method (i.e., direct, user-based indirect,
or movie-based indirect), are displayed in bold in each row
of the table, based on the t-test.

In the user-based indirect method, the best results are
obtained by Lþ and MFA. In particular, the best degree of
agreement and percentile are provided by Lþ whereas the
best recall scores (either the recall 10, or the recall 20) are
obtained by both scoring algorithms with no significant
difference. In the movie-based indirect method, kNN and
MFA provide the best results.

When looking at the global performance (regardless of the
direct or indirect way the similarities are computed) of the
various scoring algorithms, Table 1 shows that Lþ, kNN,
Cosine, cosþ , and MFA are the best scoring algorithms in
terms of both performance and stability of the results. The
best results overall are obtained by the kNN, used in the
movie-based indirect way (as proposed in the SUGGEST
method, [39]), when considering the degree of agreement or
the percentile, by Lþ and MFA, used in the user-based
indirect way, when considering the recall scores (considering
either the top 10 or the top 20). We also observe that the user-
based indirect method provides better recommendations
than the movie-based indirect method for Lþ and MFA, and
for both kNN and Cosine, but only for recall scores.

The dissimilarity measures (i.e., CT, One-way, and Return)
are clearly less efficient (with the exception of the Return in
the user-based indirect method) and they seem to lack
stability (the results are very sensitive to the method used).
We observe that CT and One-way give better results in the
direct method than in the indirect one and that their direct
recommendations are very similar to simply recommending
the most popular movies (as determined by MaxF). That both
measures would be dominated by the stationary distribution
was also suggested in [10], where it is shown that the
commute time is highly sensitive to the degree of the nodes
(which is equal, up to a scaling factor, to the stationary
distribution of a simple random walk on the graph).

The fact that the inner products (Lþ, cosþ , and MFA)
provide better results than the corresponding distance
measures (CT, PCA CT, One-way, and Return) shows that,
in these experiments, the angle between the node vectors is a
much more predictive measure than the distance between
the nodes. The situation is therefore quite similar to what

FOUSS ET AL.: RANDOM-WALK COMPUTATION OF SIMILARITIES BETWEEN NODES OF A GRAPH WITH APPLICATION TO... 363

we observe in information retrieval. This result was also
pointed out by Brand [10].

In conclusion, three similarity measures provide very
good and stable performance: Lþ, MFA, and the simple
nearest-neighbor technique (kNN). We also clearly observe
that the most efficient scoring algorithms (Lþ, MFA)
perform better with the indirect method than with the
direct one. Which of the two indirect methods (user-based
or movie-based) performs best is not clear, though. Indeed,
kNN provides slightly better results in the movie-based
indirect method, while the opposite holds for Lþ and MFA.

6.2.2 Correlations between the Ranking Algorithms

The Kendall rank-order correlation coefficient provides a
measure of the degree of association between two sets of
rankings (see [63] for details; its range is [0,1] with 1
corresponding to a perfect association and 0.5 correspond-
ing to no association at all). Table 2 shows the average
correlations between the rankings provided by all the
ranking algorithms.

First, we observe that the values of the correlations are
quite low (rarely more than 0.75). This can be partially
explained by the features of the database. There are actually
many movies that have been watched by few people (2 or
less). These movies have a small influence on the measure
of performance (i.e., it is rare to find one of them in the
movies belonging to the test set for a specific user)
whereas they have some influence on the Kendall scores,
because of their quantity (remember that a Kendall score is
computed using the whole rankings provided by the
considered scoring algorithms). We further observe that,
as discussed in the previous section, MaxF is positively
correlated with CT, PCA CT, and One-way used in the
direct method. On the other hand, Lþ, cosþ , Katz, and MFA
are negatively correlated with MaxF. Thus, these methods
do not always favor bestsellers.

6.2.3 Computing Times

We compared computing times (on a Pentium 4, 2.80 GHz)
for all the implemented scoring algorithms and the ways
defined to use them (direct, user-based indirect, or movie-
based indirect method). We did not try to exploit for any
algorithm the sparseness of the adjacency matrix A.

Table 3 shows the time, in seconds (using the Matlab
cputime function), needed by each scoring algorithm to
compute, from the adjacency matrix A, a n� n matrix
whose element i; j is a similarity measure between node i
and node j. Notice that this matrix could be computed
offline so that it could take very little time to provide an
online recommendation.

All the scoring algorithms were implemented in Matlab.
We used, in order to compute the similarity matrices, (4) for
the average commute time, the method suggested by
Kemeny and Snell ([41, p. 218]) for the average first-passage
times (one-way and return), (3) for Lþ and the derived cosþ ,
and (10) and (11) (both by inverting the matrix in Matlab)
for, respectively, Katz and MFA similarity matrices. Notice
also that, for the PCA, we first had to compute the
Lþ matrix, then take out its eigenvectors and eigenvalues
(using the Matlab svd function) and finally compute the
derived distances.

We observe that the slowest methods are the distance-
based scoring algorithms (i.e., CT, PCA CT, One-way, and
Return) and the cosþmethod. The fastest scoring algorithms
(if we do not consider the MaxF algorithm which provides
nearly immediate results) are Lþ, Katz, and MFA.

7 CONCLUSIONS AND FURTHER WORK

We have proposed a general procedure for computing
similarities between elements of a database. It is based on a
Markov-chain model of random walk through a graph
representation of the database. More precisely, we compute

364 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 3, MARCH 2007

TABLE 1
Average Results Obtained by Performing a 10-Fold Cross-Validation, for the Various Scoring Algorithms and for the Three Methods

Defined to Use Them (Direct, User-Based Indirect, and Movie-Based Indirect)

quantities (the average first-passage time, the average
commute time, and the pseudoinverse of the Laplacian
matrix) that provide similarity measures between any pair
of elements of a connected graph. These similarity measures
can be used in order to compare items belonging to
database tables that are not necessarily directly connected.
They rely on the degree of connectivity between these
elements. While the theoretical framework has been devel-
oped in the case of a weighted, undirected, graph, the
notions of average first-passage time and average commute
time also apply to directed graphs. However, the nice
interpretation in terms of the pseudoinverse of the
Laplacian matrix does not apply in this case (still, see [1],
[2] for potential generalizations to directed graphs).

We showed through experiments performed on the
MovieLens database that inner-product-based quantities
perform well in comparison with standard scoring algo-
rithms. In fact, as already stressed in [42], the proposed
quantities provide a very general mechanism for computing
similarities between nodes of a graph by exploiting its
structure.

More precisely, the experiments showed that three
similarity measures provide good and stable performances:
the pseudoinverse of the Laplacian matrix, the matrix-
forest-based similarity measure, and the simple nearest-
neighbor technique (the latter when used in an item-based
indirect method). However, for the nearest neighbor, two
parameters need to be adjusted: the number of neighbors
and the similarity between binary vectors, while the

Laplacian pseudoinverse and the matrix-forest-based mea-
sures do not need any parameter tuning in the direct
method and only need the number of neighbors in the
indirect methods. Moreover, the pseudoinverse of the
Laplacian matrix and the matrix-forest-based similarity
measure are much more generic than the nearest neighbor
since they provide similarity measures between any two
elements of a database.

The main drawback of this method is that it does not scale
well for large databases. Indeed, the Markov model has as
many states as there are elements in the database. For large
databases, we have to rely on iterative formulas, approx-
imate algorithms, and on the sparseness of the matrix.

We are now working on other generalizations of
standard multivariate statistical methods to the mining of
databases, such as discriminant analysis. We are also
comparing the various kernels on a graph that have been
proposed in the literature on the same collaborative
recommendation task [26]. Finally, we are working on
generalizations to directed weighted graphs for which the
weights are not necessarily positive.

APPENDIX A

PROOF OF THE MAIN RESULTS

A.1 SOME USEFUL PROPERTIES OF THE

PSEUDOINVERSE OF THE LAPLACIAN MATRIX

A.1.1 Lþ Is Symmetric

Since L is symmetric and, for any matrix M, ðMTÞþ ¼
ðMþÞT (see [5]), we easily obtain Lþ ¼ ðLTÞþ ¼ ðLþÞT.
Therefore, Lþ is symmetric.

A.1.2 Lþ Has Rank n� 1 and Is Doubly Centered

An EP matrix M is a matrix that commutes with its

pseudoinverse, i.e., MþM ¼MMþ. Since L is real

FOUSS ET AL.: RANDOM-WALK COMPUTATION OF SIMILARITIES BETWEEN NODES OF A GRAPH WITH APPLICATION TO... 365

TABLE 2
Correlation Matrix Containing the Kendall Score for Each Pair of Scoring Algorithms and for the Three Methods Defined

to Use Them (Direct, User-Based Indirect, and Movie-Based Indirect)

TABLE 3
Time (in Seconds) Needed to Compute Predictions
for All the Nonwatched Movies and All the Users

symmetric, it is automatically an EP-matrix (see [5,

p. 253]). In particular, the following property of

EP matrices is worth mentioning: If ð�i 6¼ 0;uiÞ are

(eigenvalues, eigenvectors) of L, then ð��1
i 6¼ 0;uiÞ are

corresponding (eigenvalues, eigenvectors) of Lþ. On the

other hand, if ð�j ¼ 0;ujÞ are (eigenvalues, eigenvectors)

of L, then they are also (eigenvalues, eigenvectors) of Lþ.
In particular, this implies that

1. Lþ has rank n� 1 and has the same null space as L:
Lþe ¼ 0 (e ¼ ½1;1; . . . ;1�T is the eigenvector asso-
ciated to �n ¼ 0).

2. The previous property shows that Lþ is doubly
centered (the sum of its columns and the sum of its
rows are both zero), just like L (see also [55,
chapter 10], for a discussion of this topic).

Other properties of EP-matrices are described in [5] or [12].

A.1.3 Lþ Is Positive Semidefinite

Indeed, from the previous property, the eigenvalues of L
and Lþ have the same sign and L is positive semidefinite;
therefore, Lþ is also positive semidefinite.

APPENDIX B

COMPUTATION OF THE AVERAGE FIRST-PASSAGE

TIME/COST IN TERMS OF Lþ

Let us start from (2), rewritten here as

oðkjiÞ ¼ ri þ
Xn
j¼1

pijoðkjjÞ; for i 6¼ k; ð12Þ

where ri ¼
Pn

j¼1 pijcðjjiÞ for i ¼ 1 . . .n, and oðkjkÞ ¼ 0 for all
k. The corresponding n� 1 column vector made of ri is r.
The objective is to find a closed-form solution for oðkjiÞ.

Let us renumber the states so that state k becomes state n,

the last state of the Markov model, and rewrite (12) in

matrix form. The equation will refer to vectors and matrices

where the nth row and the nth column have been deleted;

we denote by bo, br, and bP the vectors/matrices obtained

from o, r, and P by suppressing their nth row and column.

We thus obtain bo ¼ brþ bPbo ¼ brþ bD�1 bAbo, where the col-

umn vector bo has elements ½bo�i ¼ oðnjiÞ and bP ¼ bD�1 bA. As

long as there is no isolated node (with no edge associated to

it), bD can be inverted. If we premultiply this last equation

by bD, we obtain bDbo ¼ bDbrþ bAbo; therefore, ðbD� bAÞbo ¼ bDbr.

By defining b ¼ Dr, we finally obtain bLbo ¼ bb and, since L

has rank n� 1, bL is of full rank. We therefore havebLþ ¼ bL�1, so that

bo ¼ bL�1bb ¼ bLþbb ð13Þ

or oðnjiÞ ¼
Pn�1

j¼1
bl�1
ij bj, for i 6¼ n.

We could solve these equations for all the nodes being
node n in turn, but this would be quite inefficient. Instead,
we will express the elements of bLþ in terms of the elements
of Lþ in order to obtain a more general equation (valid for
all the nodes). This can be done thanks to the formula
computing the pseudoinverse of a general m� n matrix
Mn ¼ ½Mn�1 a� obtained by appending a m� 1 column
vector a to the m� ðn� 1Þ matrix Mn�1 (see, e.g., [5], [8]).

Before going into the details, here is a sketch of the main

idea. From the ðn� 1Þ � ðn� 1Þ matrix bL�1, we construct

Lþ by first adding a column vector to bL and then a row

vector, in order to obtain L and its corresponding

pseudoinverse Lþ. Consequently, we first obtain from bL�1

a new ðn� 1Þ � n matrix, Mn ¼ ½bL a�, and compute its

pseudoinverse Mþ
n Then, we add a row vector a0T to Mn in

order to finally obtain

L ¼ Mn

a0T

� �

and its pseudoinverse.
Here is the general formula (see, e.g., [5], [8]) allowing us

to compute the pseudoinverse of a matrix Mn ¼ ½Mn�1 a� in
terms of the pseudoinverse of Mn�1:

Mþ
n ¼ Mn�1 a½ �þ¼

Mþ
n�1 � dbT

bT

2
4

3
5; ð14Þ

where d ¼Mþ
n�1a, c ¼ a�Mn�1d, and

bT ¼ cþ if c 6¼ 0
ð1þ dTdÞ�1dTMþ

n�1 if c ¼ 0;

	
ð15Þ

with a, b, c, and d being column vectors.
In our special case, Mn�1 ¼ bL is ðn� 1Þ � ðn� 1Þ, and

since we must obtain Le ¼ 0 (L is doubly centered), the
appended column a is minus the sum of the columns of bL;
that is, a ¼ �bLbe. We thus have d ¼ bLþa ¼ �bL�1bLbe ¼ �be.

We will show that we do not need to explicitly compute
b; indeed, we obtain from (14)

Mþ
n ¼

bLþ þ bebT

bT

� �
: ð16Þ

By looking carefully at (16), we observe that bLþ can be
obtained from Mþ

n by subtracting the nth row of Mþ
n (that

is, bT) from all the rows of Mþ
n . Indeed, bebT is a matrix

repeating bT on all its rows:

bebT ¼

1
1
..
.

1

2
664
3
775bT ¼

bT

bT

..

.

bT

2
6664

3
7775:

In other words,

Mþ
n ¼

bLþ
0T

� �
þ

bT

bT

..

.

bT

2
6664

3
7775:

This means that ½bLþ�ij ¼ blþij ¼ ½Mþ
n �ij � ½Mþ

n �nj.
Exactly the same reasoning holds when we append a

1� n row vector a0T to Mn in order to obtain

L ¼ Mn

a0T

� �
:

It suffices to transpose Mn and add a column which verifies
a0 ¼ �MT

nbe. Hence, d ¼ ðMT
n Þ
þa ¼ �ðMT

n Þ
þMT

nbe ¼ �be since
the n� ðn� 1Þ matrix MT

n has rank n� 1 and therefore

366 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 3, MARCH 2007

ðMT
n Þ
þMT

n ¼ I (this can be shown easily by computing the

SVD form of the pseudoinverse matrix (see Theorem 6.2.16 of

[29])). By using the same trick as before, we obtain

½Mþ
n �ij ¼ ½Lþ�ij � ½Lþ�in.

This allows us to express the elements of bLþ in terms of

those of Lþ:

blþij ¼ ½Mþ
n �ij � ½Mþ

n �nj
¼ ½Lþ�ij � ½Lþ�in � ½Lþ�nj þ ½Lþ�nn
¼ lþij � lþin � lþnj þ lþnn:

ð17Þ

By substituting (17) in (13), we obtain

oðnjiÞ ¼
Xn�1

j¼1

bl�1
ij bj ¼

Xn�1

j¼1

lþij � lþin � lþnj þ lþnn
� �

bj

¼
Xn
j¼1

lþij � lþin � lþnj þ lþnn
� �

bj

since Lþ is symmetric.
Now, remember that we renumbered the states in order

to put state k at the nth row/column. For any arbitrary
state, we thus have

oðkjiÞ ¼
Xn
j¼1

lþij � lþik � lþkj þ lþkk
� �

bj; ð18Þ

where bi ¼
Pn

j¼1 aijcðjjiÞ. Notice that in the case of the
average first-passage time, cðjjiÞ ¼ 1, and

bi ¼
Xn
j¼1

aijcðjjiÞ ¼ ai: ¼ dii;

the sum of the weights reaching node i. Therefore,

mðkjiÞ ¼
Xn
j¼1

lþij � lþik � lþkj þ lþkk
� �

djj: ð19Þ

APPENDIX C

COMPUTATION OF THE AVERAGE COMMUTE TIME IN

TERMS OF Lþ

Since we already have the formula for the average first-
passage time (19), computing the average commute time is
trivial:

nði; jÞ ¼ mðjjiÞ þmðijjÞ

¼
Xn
k¼1

lþik � lþij � lþjk þ lþjj
� �

dkk

þ
Xn
k¼1

lþjk � lþji � lþik þ lþii
� �

dkk

¼ lþii þ lþjj � 2lþij

� �Xn
k¼1

dkk

¼ VG lþii þ lþjj � 2lþij

� �
:

ð20Þ

Equation (20) can be put in matrix form,

nði; jÞ ¼ VG ðei � ejÞTLþðei � ejÞ ð21Þ

and we easily observe that ½nði; jÞ�1=2 is a distance measure
in the node space since Lþ is positive semidefinite.

APPENDIX D

MAPPING TO A SPACE PRESERVING THE ECTD

Let us show that the node vectors ei can be mapped into a
new Euclidean space that preserves the commute time
distances. Indeed, every positive semidefinite matrix can be
transformed to a diagonal matrix, � ¼ UTLþU, where U is
an orthonormal matrix made of the eigenvectors of Lþ,
U ¼ ½u1;u2; . . . ;un�1;0�: the column vectors uk are the
orthonormal eigenvectors of Lþ, uT

i uj ¼ �ij or UTU ¼ I
(see, for instance, [49]). Hence, by using the transformation

ei ¼ Uxi
x0i ¼ �

1=2
i xi;

	
ð22Þ

we obtain

nði; jÞ ¼ VG ðei � ejÞTLþðei � ejÞ
¼ VG ðxi � xjÞTUTLþUðxi � xjÞ
¼ VG ðxi � xjÞT�ðxi � xjÞ
¼ VG ðxi � xjÞTð�1=2ÞT�1=2ðxi � xjÞ
¼ VG ðx0i � x0jÞ

Tðx0i � x0jÞ:

So, in this n-dimensional Euclidean space, the trans-
formed node vectors, x0i, are exactly separated by Euclidean
commute time distances.

Now, we easily observe from (22) that if uki is coordinate i
of eigenvector uk ð½uk�i ¼ uki Þ corresponding to eigenvalue
�k of Lþ, and if xik is coordinate k of vector xi ð½xi�k ¼ xikÞ,
we obtain xik ¼ uki . We thus have x0ik ¼

ffiffiffiffiffi
�k
p

uki where x0ik is
coordinate k of vector x0i ð½x0i�k ¼ x0ik Þ.

In other words, the first coordinate of the n node
vectors, x0i; i ¼ 1 . . .n, corresponding to the first axis ðk ¼
1Þ of the transformed space, are x011 ; x

02
1 ; . . . ; x0n1 , orffiffiffiffiffi

�1

p
u1

1;
ffiffiffiffiffi
�1

p
u1

2; . . . ;
ffiffiffiffiffi
�1

p
u1
n, and correspond to the principal

eigenvector of Lþ multiplied by
ffiffiffiffiffi
�1

p
. The idea developed

in Section 5 is thus to discard the axes (eigenvectors)
corresponding to the smallest eigenvalues of Lþ.

APPENDIX E
Lþ IS A KERNEL

In this section, we show that Lþ is a valid kernel or Gram
matrix (see, for instance, [60], [61]). Indeed, Lþ is the matrix
containing the inner products of the transformed vectors x0i:

x0Ti x0j ¼ ð�1=2
i xiÞT�

1=2
j xj ¼ xT

i �xj

¼ eT
i U�UTej ¼ eT

i Lþej ¼ lþij:

Let us also show that the vectors x0i are centered (their
center of gravity is 0):

Xn
i¼1

x0i ¼ �1=2
Xn
i¼1

xi ¼ �1=2UT
Xn
i¼1

ei ¼ �1=2UTe:

From � ¼ UTLþU, we have �1=2UT ¼ ��1=2UTLþ.
Therefore,

Pn
i¼1 x0i ¼ ð�1=2UTÞe ¼ ð��1=2UTLþÞe ¼ 0 since

Lþe ¼ 0.

FOUSS ET AL.: RANDOM-WALK COMPUTATION OF SIMILARITIES BETWEEN NODES OF A GRAPH WITH APPLICATION TO... 367

Thus, if X0 denotes the data matrix containing the
coordinates of the nodes in the transformed space on
each row:

X0 ¼ x01;x
0
2; . . . ;x0n

 �T
; ð23Þ

we have Lþ ¼ X0ðX0ÞT with elements lþij ¼ x0Ti x0j.

APPENDIX F

LINKS WITH PCA

We will now show that this decomposition is similar to PCA
in the sense that the projection has maximal variance among
all the possible candidate projections. If X0 denotes the data
matrix containing the coordinates of the nodes in the
transformed space, x0Ti , on each row (see (23)), we easily
deduce from (22) that X0 ¼ U�1=2.

It is well known that the principal components
analysis of a data matrix X0 yields, as kth principal
component, the eigenvector, vk, of ðX0ÞTX0 (which is the
variance-covariance matrix, since the x0i are centered).
But, ðX0ÞTX0 ¼ ðU�1=2ÞTU�1=2 ¼ �. Since � is a diagonal
matrix, we deduce that the x0i are already expressed in the
principal components coordinate system—the eigenvectors of
ðX0ÞTX0 are in fact the basis vectors of the transformed
space. The variance, in terms of ECTD, of the nodes
cloud on each principal component k is therefore �k. An
alternative proof of the same result is presented in [57].

We thus conclude that this projection can be viewed as a
principal components analysis in the Euclidean space
where the nodes are exactly separated by ECTD. This
decomposition therefore defines the projection of the node
vectors that has maximal variance (in terms of the ECTD)
among all the possible candidate projections.

ACKNOWLEDGMENTS

The authors thank P. Van Dooren and V. Blondel from the
“Département d’Ingénierie Mathématique” as well as
P. Dupont from the “Département d’Ingénierie Informa-
tique,” at the Université catholique de Louvain, for
insightful discussions. Part of this work has been funded
by projects with the Belgian Federal Police, the “Région
wallonne,” and the “Région de Bruxelles-Capitale.”

REFERENCES

[1] R. Agaev and P. Chebotarev, “The Matrix of Maximum Out
Forests of a Digraph and Its Applications,” Automation and Remote
Control, vol. 61, no. 9, pp. 1424-1450, 2000.

[2] R. Agaev and P. Chebotarev, “Spanning Forests of a Digraph and
Their Applications,” Automation and Remote Control, vol. 62, no. 3,
pp. 443-466, 2001.

[3] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval.
Addison-Wesley, 1999.

[4] P. Baldi, P. Frasconi, and P. Smyth, Modeling the Internet and the
Web: Probabilistic Methods and Algorithms. John Wiley and Sons,
2003.

[5] S. Barnett, Matrices: Methods and Applications. Oxford Univ. Press,
1992.

[6] M. Belkin and P. Niyogi, “Laplacian Eigenmaps and Spectral
Techniques for Embedding and Clustering,” Advances in Neural
Information Processing Systems, T.G. Dietterich, S. Becker, and
Z. Ghahramani, eds., vol. 14, pp. 585-591, MIT Press, 2001.

[7] M. Belkin and P. Niyogi, “Laplacian Eigenmaps for Dimension-
ality Reduction and Data Representation,” Neural Computation,
vol. 15, pp. 1373-1396, 2003.

[8] A. Ben-Israel and T. Greville, Generalized Inverses: Theory and
Applications, second ed. Springer-Verlag, 2003.

[9] I. Borg and P. Groenen, Modern Multidimensional Scaling: Theory
and Applications. Springer, 1997.

[10] M. Brand, “A Random Walks Perspective on Maximizing
Satisfaction and Profit,” Proc. 2005 SIAM Int’l Conf. Data Mining,
2005.

[11] F. Buckley and F. Harary, Distance in Graphs. Addison-Wesley
Publishing Company, 1990.

[12] S. Campbell and C. Meyer, Generalized Inverses of Linear Transfor-
mations. Pitman Publishing Company, 1979.

[13] T. Chan, P. Ciarlet, and W. Szeto, “On the Optimality of the
Median Cut Spectral Bisection Graph Partitioning Method,” SIAM
J. Scientific Computing, vol. 18, no. 3, pp. 943-948, 1997.

[14] A.K. Chandra, P. Raghavan, W.L. Ruzzo, R. Smolensky, and P.
Tiwari, “The Electrical Resistance of a Graph Captures Its
Commute and Cover Times,” Proc. Ann. ACM Symp. Theory of
Computing, pp. 574-586, 1989.

[15] P. Chebotarev and E. Shamis, “The Matrix-Forest Theorem and
Measuring Relations in Small Social Groups,” Automation and
Remote Control, vol. 58, no. 9, pp. 1505-1514, 1997.

[16] P. Chebotarev and E. Shamis, “On a Duality between Metrics and
S-Proximities,” Automation and Remote Control, vol. 59, no. 4,
pp. 608-612, 1998.

[17] P. Chebotarev and E. Shamis, “On Proximity Measures for Graph
Vertices,” Automation and Remote Control, vol. 59, no. 10, pp. 1443-
1459, 1998.

[18] K. Cheung, K. Tsui, and J. Liu, “Extended Latent Class Models for
Collaborative Recommendation,” IEEE Trans. Systems, Man, and
Cybernatics. Part A: Systems and Humans, vol. 34, pp. 143-148, 2004.

[19] F.R. Chung, Spectral Graph Theory, Am. Math. Soc., 1997.
[20] C. Ding, “Spectral Clustering,” Tutorial presented at the 16th

European Conf. Machine Learning (ECML ’05), 2005.
[21] P.G. Doyle and J.L. Snell, Random Walks and Electric Networks. The

Math. Assoc. of Am., 1984.
[22] S. Dzeroski, “Multi-Relational Data Mining: An Introduction,”

ACM SIGKDD Explorations Newsletter, vol. 5, no. 1, pp. 1-16, 2003.
[23] C. Faloutsos, K. McCurley, and A. Tomkins, “Fast Discovery of

Connection Subgraphs,” Proc. 10th ACM SIGKDD Int’l Conf.
Knowledge Discovery and Data Mining, pp. 118-127, 2004.

[24] M. Fiedler, “A Property of Eigenvectors of Nonnegative Sym-
metric Matrices and its Applications to Graph Theory,” Czechoslo-
vak Math. J., vol. 25, no. 100, pp. 619-633, 1975.

[25] F. Fouss, A. Pirotte, J.-M. Renders, and M. Saerens, “A Novel Way
of Computing Similarities between Nodes of a Graph, with
Application to Collaborative Recommendation,” Proc. 2005 IEEE/
WIC/ACM Int’l Joint Conf. Web Intelligence, pp. 550-556, 2005.

[26] F. Fouss, L. Yen, A. Pirotte, and M. Saerens, “An Experimental
Investigation of Graph Kernels on Two Collaborative Recom-
mendation Tasks,” submitted for publication.

[27] F. Gobel and A. Jagers, “Random Walks on Graphs,” Stochastic
Processes and Their Applications, vol. 2, pp. 311-336, 1974.

[28] J. Gower and P. Legendre, “Metric and Euclidean Properties of
Dissimilarities Coefficients,” J. Classification, vol. 3, pp. 5-48, 1986.

[29] F.A. Graybill, Matrices with Applications in Statistics. Wadsworth
Int’l Group, 1983.

[30] A. Greenbaum, Iterative Methods for Solving Linear Systems. Soc. for
Industrial and Applied Math., 1997.

[31] D. Harel and Y. Koren, “On Clustering Using Random Walks,”
Proc. Conf. Foundations of Software Technology and Theoretical
Computer Science, pp. 18-41, 2001.

[32] J. Herlocker, J. Konstan, L. Terveen, and J. Riedl, “Evaluating
Collaborative Filtering Recommender Systems,” ACM Trans.
Information Systems, vol. 22, no. 1, pp. 5-53, 2004.

[33] I. Herstein and D. Winter, Matrix Theory and Linear Algebra.
Maxwell Macmillan International Editions, 1988.

[34] N.-D. Ho and P.V. Dooren, “On the Pseudo-Inverse of the
Laplacian of a Bipartite Graph,” Applied Math. Letters, vol. 18,
no. 8, pp. 917-922, 2005.

[35] Z. Huang, H. Chen, and D. Zeng, “Applying Associative Retrieval
Techniques to Alleviate the Sparsity Problem in Collaborative
Filtering,” ACM Trans. Information Systems, vol. 22, no. 1, pp. 116-
142, 2004.

[36] D. Isaacson and R. Madsen, Markov Chains Theory and Applications.
John Wiley and Sons, 1976.

368 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 3, MARCH 2007

[37] T. Ito, M. Shimbo, T. Kudo, and Y. Matsumoto, “Application of
Kernels to Link Analysis: First Results,” Proc. Second Workshop
Mining Graphs, Trees, and Sequences, ECML/PKDD, pp. 13-24, 2004.

[38] R. Johnson and D. Wichern, Applied Multivariate Statistical
Analysis, fifth ed. Prentice Hall, 2002.

[39] G. Karypis, “Evaluation of Item-Based Top-N Recommendation
Algorithms,” Proc. 10th Int’l Conf. Information and Knowledge
Management, pp. 247-254, 2001.

[40] L. Katz, “A New Status Index Derived from Sociometric
Analysis,” Psychmetrika, vol. 18, no. 1, pp. 39-43, 1953.

[41] J.G. Kemeny and J.L. Snell, Finite Markov Chains. Springer-Verlag,
1976.

[42] D.J. Klein and M. Randic, “Resistance Distance,” J. Math.
Chemistry, vol. 12, pp. 81-95, 1993.

[43] J.M. Kleinberg, “Authoritative Sources in a Hyperlinked Environ-
ment,” J. ACM, vol. 46, no. 5, pp. 604-632, 1999.

[44] R.I. Kondor and J. Lafferty, “Diffusion Kernels on Graphs and
Other Discrete Structures,” Proc. 19th Int’l Conf. Machine Learning,
pp. 315-322, 2002.

[45] C.D. Meyer, “The Role of the Group Generalized Inverse in the
Theory of Finite Markov Chains,” SIAM Rev., vol. 17, pp. 443-464,
1975.

[46] B. Mohar, “Laplace Eigenvalues of Graphs—A Survey,” Discrete
Math., vol. 109, pp. 171-183, 1992.

[47] B. Nadler, S. Lafon, R. Coifman, and I. Kevrekidis, “Diffusion
Maps, Spectral Clustering and Eigenfunctions of Fokker-Planck
Operators,” Advances in Neural Information Processing Systems 18,
pp. 955-962, 2006.

[48] M. Newman, “A Measure of Betweenness Centrality Based on
Random Walks,” Social Networks, vol. 27, no. 1, pp. 39-54, 2005.

[49] B. Noble and J. Daniels, Applied Linear Algebra, third ed. Prentice-
Hall, 1988.

[50] J. Norris, Markov Chains. Cambridge Univ. Press, 1997.
[51] L. Page, S. Brin, R. Motwani, and T. Winograd, “The Pagerank

Citation Ranking: Bringing Order to the Web,” technical report,
Computer System Laboratory, Stanford Univ., 1998.

[52] C. Palmer and C. Faloutsos, “Electricity Based External Similarity
of Categorical Attributes,” Proc. Seventh Pacific-Asia Conf. Knowl-
edge Discovery and Data Mining (PAKDD ’03), pp. 486-500, 2003.

[53] E. Parzen, Stochastic Processes. Holden-Day, 1962.
[54] A. Pothen, H. Simon, and K.-P. Liou, “Partitioning Sparse

Matrices with Eigenvectors of Graphs,” SIAM J. Matrix Analysis
and Applications, vol. 11, no. 3, pp. 430-452, 1990.

[55] C. Rao and S. Mitra, Generalized Inverse of Matrices and Its
Applications. John Wiley and Sons, 1971.

[56] Y. Saad, Iterative Methods for Sparse Linear Systems. Soc. for
Industrial and Applied Math., 2000.

[57] M. Saerens and F. Fouss, A Novel Way of Computing Similarities
between Nodes of a Graph, with Application to Collaborative
Filtering and Subspace Projection of the Graph Nodes, working
paper, IAG, Université catholique de Louvain, 2006.

[58] M. Saerens, F. Fouss, L. Yen, and P. Dupont, “The Principal
Components Analysis of a Graph, and Its Relationships to Spectral
Clustering,” Proc. 15th European Conf. Machine Learning (ECML
’04), pp. 371-383, 2004.

[59] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Recommender
Systems for Large-Scale E-Commerce: Scalable Neighborhood
Formation Using Clustering,” Proc. Fifth Int’l Conf. Computer and
Information Technology, 2002.

[60] B. Scholkopf and A. Smola, Learning with Kernels. The MIT Press,
2002.

[61] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern
Analysis. Cambridge Univ. Press, 2004.

[62] J. Shi and J. Malik, “Normalised Cuts and Image Segmentation,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 8,
pp. 888-905, Aug. 2000.

[63] S. Siegel and J. Castellan, Nonparametric Statistics for the Behavioral
Sciences, second ed. McGraw-Hill, 1988.

[64] A.J. Smola and R. Kondor, “Kernels and Regularization on
Graphs,” Proc. Conf. Learning Theory (COLT) and Kernels Workshop,
M. Warmuth and B. Schölkopf, eds., 2003.

[65] S. Wasserman and K. Faust, Social Network Analysis: Methods and
Applications. Cambridge Univ. Press, 1994.

[66] S. White and P. Smyth, “Algorithms for Estimating Relative
Importance in Networks,” Proc. Ninth ACM SIGKDD Int’l Conf.
Knowledge Discovery and Data Mining, pp. 266-275, 2003.

[67] D. Zhou, J. Huang, and B. Scholkopf, “Learning from Labeled and
Unlabeled Data on a Directed Graph,” Proc. 22nd Int’l Conf.
Machine Learning, pp. 1041-1048, 2005.

François Fouss received the BS degree in
management sciences in 2001 and the MS
degree in information systems in 2002, both
from the Université catholique de Louvain
(UCL), Belgium. He is now preparing a PhD
thesis in the field of machine learning and
data mining. His main research areas are
collaborative recommendations, graph mining,
and classification.

Alain Pirotte is a professor of computing
science and information management at the
Université catholique de Louvain (UCL) and at
the Université Libre de Bruxelles (ULB), Bel-
gium. Earlier, he was a researcher in industry for
more than 20 years. His interests include
database management, information modeling,
the methodology for software development, and
cooperation with developing countries. He is a
member of the IEEE.

Jean-Michel Renders received the PhD
Degree from the Université Libre de Bruxelles
(ULB), Belgium, in 1993. His main research
interests include machine learning techniques
applied to statistical natural language proces-
sing and text mining. He is currently a senior
scientist at Xerox Research Centre Europe,
where he is actively involved in document
categorization, multimedia and multilingual
information retrieval, and entity extraction

projects. He is a member of the PASCAL European network of
excellence http://www.pascal-network.org/Network/Sites/54/ (Pattern
Analysis, Statistical modelling and ComputAtional Learning).

Marco Saerens received the PhD degree in
engineering from the Université Libre de Brux-
elles (ULB), Belgium, in 1991, and after gradua-
tion joined the IRIDIA Laboratory (the artificial
intelligence laboratory, ULB) as a research
assistant. While remaining a part-time research-
er at IRIDIA, he then worked as a senior
researcher in the R and D department of various
industries, mainly in the fields of speech
recognition, data mining, and artificial intelli-

gence. In 2002, he joined the Universite catholique de Louvain (UCL) as
a professor in computing science. His main research interests include
artificial intelligence, machine learning, data mining, pattern recognition,
and speech/language processing. He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

FOUSS ET AL.: RANDOM-WALK COMPUTATION OF SIMILARITIES BETWEEN NODES OF A GRAPH WITH APPLICATION TO... 369

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

