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Abstract In_the case of machine learning, most clasgifiu:atio
, . .. algorithms were developed to learn about passingeta
~_Inthe spam domain, the data mining classifier jasses. When trained on data that contains sate d
Naive Bayes has become the standard for use in COMy5t \was crafted by an adversary, these algorithres
mercial anti-spam products. It has therefore Keeki _ vulnerable to several types of attacks on integaityl
much study from the research community, recently ingyqijapility[1]. In fact, controlling as little a&% of the
terms of its susceptibility to adversarial attaaid ats training data is sufficient in some cases[2].
poor defense against these attacks. Yet, littlekvias It may seem odd that someone would use data pro-
been done to show any sort of comparison of thBIgD  \;i4eq by an adversary to train a system. Howefeer,
classifier against other classifiers. Determinedinid a some real-world systems, such as systems that tdetec
better and more resilient classifier, we comparedval email spam, link spam, money laundering, credidcar
Bayes against three other classifiers. Our ensembl fraud, check fraud, insurance fraud, and other umedh
learning algorithm, AdaBoost, significantly outper- geiivities, the past actions of adversaries areimapy
formed the other classifiers in 29 out of 30 expents. source of training data, and most systems aresiedce
This could potentially drive further work into ugiren- regularly so that they are always trained on thetme-
semble learners for security in machine learning. cent examples of unwanted behavior. This providds
) ficient influence for an adversary to attempt soate
1 [Introduction tacks.

1.1 Overview
We are interested in the intersection of secunitgy ma- 2 BaCkgr ound and related work

chine learning. Specifically, how can an adversdfgct 2.1  Security in Machine Learning
a machine-learning system? Current researchsnati®a o piyrality of the directly related work we haveufud
works extensively with spam filters, with an ad@@¥s 35 come from Joseph et al at the SecML reseataipgr
who supplies malicious emails to the system. Tisgse (y-//radlab.cs.berkeley.edu/wiki/SecML), part tfe
tems ‘learn’ from these new emails, which then@fe  Rejiaple Adaptive Distributed Systems LaboratorA[R
their spam labeling going forward. - Lab) at the University of California at Berkelegoseph
We compare the impact of attacks on classifiers tha o 5| has directly addressed the existence of theer
are used in these types of systems to identifytivela  opijivy of adaptive systems in security-sensitivevie
vulnerability or robustness of these classifierstttese ronments [1, 3], developed a threat model for adapt
attacks. spam filters[3], and quantified the extent of dHtat an
. . adversary would need to control in order to exeeute
1.2 The Importance of Security in Ma-  attack [2], and identified what they consider to the
chine Learning major open problems in the security of adaptiveesys

Many computer systems are developed for use in ond#l- [N their paper on open problems in this areay
context, and then are later used in a different cegult- ~ N@me quantifying the influence of an adversary asd

ing in some mismatches between the assumptioriseof t @Plishing bounds on the cost and impact of arcktar
developer and the reality of the environment. Wtren categories of learners as_key _problems that shoeildd-
transition is from a secure, controlled environmgng ~ dressed by researchers in this area. Althougtraalo

potentially hostile environment, this mismatch cagult ~ Proof of bounds or taxonomy of classifiers withaetjto
in significant security failures. security is beyond the scope of this project, wikebe
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that providing some experimental results will helg- on Availability seek to affect or reveal the cldissition
vance the work toward developing them. of ham.

Several other researchers have developed experimenA dversary capabilities
tal results relevant to this question, generallyhia form The mostybasF;c ability of & spammer is to send
of conducting attacks on specific systems. Mosthef y P Stheh

. : is caught by the filter (or user) and labeled aansp
experimental work seems to have been conductelein t Other capabilities are possible (see section SUuIE
spam domain [2, 5, 6] , although at least one rekea P P

reported results related to network traffic anonddyec- X\;m;))’i”?m 08;” r?a]:vti?le a;tr?)(i:tl::\rhe:r?erseslg Z);Clgz\ég:?éj
tion [7]. Joseph et al notes that there is culyem (ac- S gm y 9 y 9
cepted) theoretical analysis or interpretationhafse at- pam.
tacks .
Although Joseph et al seeks to identify the immdct 3 Experlmental approach
adversarial action on learning systems, and pgossl 31 Dataset

prevent it, other researchers have approached rtite p o )
lem of learning about potentially deceptive adveesa 1 he dataset we are using is a set of email messages

by incorporating explicit models of their adversarinto Ehe En”ron “Corp?ranon, with each message labetberei
their learning algorithms, including explicit modebf spam” or *ham’, that was prepared for the Spanmckra
their adversaries’ learning capabilities [8, 9]. of the 2005 Text REtrieval Conference (TREC)[11].
This impasse is the definition of a Nash equilibriin Each email is in its own text file, in its originirm. We
non-cooperative game theory [10]. Many researcherdWill first need to preprocess these _emalls into arim
dealing with adversarial (especially zero-sum) dmsia ormat that a machine-learning algorithm can urtdercs
have sought to calculate equilibrium strategy deectly We treat each email as a bag of words extracted fro
and employ the constituent strategies. This ambris the content of the message. Network informatiarcifs
by its nature conservative, because a system einglidy @S Originating IP addresses and other message ame}ad

may pass up opportunities to exploit non-optimgpamp IS excluded from the feature set.

nents. It is also often prohibitively expensivecicu-  preprocessing

late the equilibria of a non-trivial game. We used a common data-mining tool called Weka[t2] t
train and test the classifiers, as it provides mmon in-

2.2 The Spam Domain terface for all of the target classifiers. The adat

Classification algorithms have been widely used for "€€ded to go through a series of steps to be réeady
spam filtering. There is considerable work on dewe  Processing in Weka. The original emails were corede
ing ways to separate good email (ham) from ungsetici to a matrix of size n by m, where each row repressan

junk message (spam) by using classifiers to idg k- email and each column represents a word found yn an
tinguishing features of the contents of messagéss is ~ email. In size, n will be the number of emails are
the area where we will test our attacks. working with, and m is the number of distinct words

The spam-filtering domain also has considerablekwor found in all the emails. The value in each elenwéribe
on non-adaptive filtering, and on domain-specifiale matrix is the number of.t|mes that the wqrd_lncmtaby
lenges such as recognizing messages embeddedge imathat column appeared in the message indicated dy th
files. The work to extract meaningful featuresnfrob- ~ "OW.
fuscated content (such as dealing with the setifi  pyoplems/Limitations
ways to spell “Viagra” so that a human can reae it pye to the large size of dataset, some filteringdee to
http://cockeyed.com/lessons/viagra/viagra.htmllj any  take place to allow for reasonable processing timae

approaches to filtering that are based on non-cofé&-  first took a random subset of our dataset, keepirey
tures (such as analyzing the SMTP path or analy#ieg  proportion of spam to ham emails the same as thedt
user’s social network) are out of the scope ofphégect.  of emails. We removed any files we believed toehav
Threat model attachments by filtering emails of a predetermisemt.

The threat model for adaptive spam filters devedopg ~ 1hat removed ‘words’ that were actually long streawh
Barreno [3] classifies attacks according to whethey data in character format. That helped significartiut
are Causative or Exploratory, Targeted or Indistrate, ~ We Still had too many columns; hundreds of thousand
and whether they are aimed at disrupting Integoity We created a func_t|0_n in Matlab to |dent!fy columns
Availability. A Causative attack aims to causectdssi- ~ (Words) that were insignificant. The function cémh
fication of a message or set of messages, whereg-a NOW many rows (emails) had any value of that paldic
ploratory attack aims to determine the classifwatf a ~ Word, and if the total fell under a certain threshave
message or set of messages. Attacks on Integety ® removed it. This improved our column count signifi
affect or reveal the classification of spam, whitéacks
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cantly. This resulted in a small yet representatiataset
that we converted into a Weka format.

3.2 Attacks

Attack selection

In considering the type of attacks we would tesg w
needed to consider a number of factors. Firstheeded
to know which ones would be tractable within ouaibv
able processing time based on both the time redjuoe
generate attack data and the time required to perfoe
additional train-test cycles. Second, we wantcatidhat
are plausible in our test domain, both because tkey
quire knowledge that the attacker might reasondigy
expected to know, and because their cost and valtre
attacker would make them attractive. The dictigrard
mimicry attacks require only the knowledge of theng
eral words in use, and a probabilistic knowledga ein-
gle message (respectively) so these are quite meh&o
in terms of attacker knowledge. The cost of cagyout
the attacks is just the sending of some emailsateata-
beled as spam, which is very inexpensive to theckétr,
and the value is either the deactivation of tharsfilier
(for dictionary attacks) or the loss of a valuablmail
message (for the mimicry attacks). We also expeat
these attacks are different enough that the varidgs-
rithms will exhibit different relative degradatioates as
the percentage of poisoned training data increa$ést
is, we expect that the vulnerability to these &ttais not
highly correlated among the algorithms.

Mimicry attack
In this attack, the adversary has a target goodn)ha
email it is trying to have misclassified as spahhis is a
type of allergy attack in which the target messige
mimicked as closely as possible. All or a portafrthe
target email’s content is known, allowing the adeey
to send copies of that email, again, from a blatéd IP
address, forcing the email to be classified as spam

To create this attack, we take a ham email thabts
included in the dataset we are using, and createrder
of attack emails. When creating an attack emaithe
word from the target email is included with probipip.
If it is not included, a random word from the Lindic-
tionary was included.

3.3 Target Classifiers

We tested some basic classifiers (Naive Bayessideci
trees [C4.5], boosted decision stumps, and Rippsr)
spam filters. Tests were run both on the existiata (a
baseline measure) and with an active adversaryes@h
algorithms were chosen because all of them have bee
previously used or proposed for use as spam detecti
algorithms[13], and also because they represemtna s
pling of different families of classifiers (see bl that
have different levels of expressiveness and rolegstio
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noise. In addition, all of these algorithms arenowonly
studied and easily understood by a person whovistae
machine learning. We hope this will make our ekper
ments accessible to many readers.

Naive Bayes

Naive Bayes is widely used for spam detection @hdro
applications due to its speed, ease of implememati
and generally good results. An example of a sin\de
ive Bayes spam filter that is in wide use is SpayeBa
Although simple, Seewald found the basic learner in
SpamBayes to perform better than some more complex,
specially tuned variations of Naive Bayes [14].e Hys-
tems judged inferior to SpamBayes by Seewald ireclud
SpamAssassin, the spam filter is used by the Usiityer
of Minnesota Computer Science Department.

We were also interested in Naive Bayes because Nel-
son performed an analysis of the vulnerability pa®&-
Bayes to mimicry attacks [2], and we wanted toudel a
similar classifier as a way of reproducing his f&sin a
situation that allowed comparison with other classs.

AdaBoost with Decision Stumps

We wanted to include at least one classifier basedn-
semble learning, and to stick to very basic clamsif
AdaBoost using Decision Stumps as the weak leaiisers
a very simple, perhaps simplistic, representatifz¢he
class of ensemble learners. More sophisticatedthmp
algorithms and ensemble classifiers exist, butesiwe
were hoping to capture a comparison between vesicba
classifiers, we felt this was a good choice.

C4.5 Decision Tree

Decision Trees are another type of basic clasdifiat is
widely used. We chose the C4.5 algorithm for bngd
the decision trees, rather than a simpler decisien
building algorithm such as ID3, because C4.5 dbats
ter with real-valued attributes yet is still easypegh to
understand. C4.5 also includes some regularizgbgn
pruning of the resulting decision tree), and Baoréias
suggested that various regularizing mechanisms dvoul
be possible defenses against some attacks [3].

Ripper

Ripper is a rule-generating algorithm that is desitjto

be especially well-suited for classification prahkewith

a rare class. Our test data set has roughly bedanc
classes so this strength may not be evident, but we
wanted a representative of algorithms that workl wel
with rare classes in our set of classifiers. Rule-
generating systems are related to decision tragsthe
methods used by Ripper and C4.5 to produce the deci
sion points are quite different.
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—-Ripper -= NB - C4.5 -~ AdaBoost
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Figure 1: Attack success against each classifier
by the percentage of training data controlled by
the adversary, aggregation of all tests performed

4 Experimental Results

We first review the overall success of the attaakd the
net performance of each algorithm on our chosextlsdt
and then later, we will see how the classifierdqrened
differently based on the variables being testedh sas
percent known of the target email, or percent ¢& dan-
trolled by the adversary. This provides a usebokl at
the potential strengths and weaknesses of eactifidas

4.1 Basdline classification accuracy

Before adding any poisoned data, we ran the clessif
on the clean data set to see how effective eachvaseat
the underlying classification task, using ten-fabss
validation to evaluate the effectiveness of eaelsgifier.
Although the later attack experiments do not lobkha
impact on overall classification accuracy (only the
success or failure of the attack on the target agesgs
the base rate of success is important becausevithil
be one of the key measures for evaluating thed#trd a
classifier for any particular task.

4.2 Overall Performance

We were able to successfully recreate the findofghe
Joseph et al research group [1, 3], Our mimicracktt
was able to fool Naive Bayes with a very small jport
of the data controlled, similar to their findinghis is

important; we were not sure how their results would

transfer to a simpler implementation of a Naive &ay
algorithm. They ran their experiments on a comiaérc
product that used NB, while we were running a daita
ing tool using NB. In addition, the other clagsifiion
algorithms we ran had similar results. Our reswitsbe
useful to the community, as they clearly fit withime
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—-Ripper == NB + C4.5 ~ AdaBoost
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Figure 2: Attack success against each classifier
by the adversary's percentage chance of guessing
each token in the target messages

norms of other experiments while adding value thtou
testing these other classifiers.

Classifier % of Attacks Baseline
Successful Accuracy
AdaBoost 26.0% 96.51%
C4.5 48.9% 96.32%
Naive Bayes 46.4% 94.70%
Ripper 44.7% 96.82%
Grand Total 41.5% 96.09%

It is clear to see that while Naive Bayes is net worst
algorithm for resilience against adversary attétclkely

is not the best. The AdaBoost classifier performid
nificantly better than the rest, implying that itayjnbe
worth doing a more thorough analysis on ensemhie fo
use in this domain.

We ran 30 different experiments with various combi-
nations of our two variables, percent of target iema
known and percent of data controlled. Each expamim
was run on 17 different target emails. AdaBoost the
best average classification performance in 29 ef 3B
experiments, usually with a significant margin. isTfs
substantial, not dominance on a few experimentsyithr
select parameters, but better in almost every éxpet.
These results point to ensemble learning algoritlass
possible good choices when considering securitman
chine learning algorithms.

4.3 Sensitivity to adversary control

C4.5 and Ripper

These two algorithms showed similar vulnerability t
similar combinations of attack parameters. Thinas
very surprising since both algorithms are similagby-
pressive in terms of the decision boundaries thegte.
Both algorithms create rectilinear partitions o thitrib-
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ute space, and both perform some explicit featu@ip
tization as part of building these boundaries.

These two classifiers had relatively greater vidbés
ity at low levels of adversary control (less thar,lsee

Error! Reference source not found.), but then seemed

to plateau after about 2% of control while AdaBoasd
Naive Bayes continued to degrade. The likely nedso
this is that these classifiers rely on only a stloédea-
tures for each decision. This means that a langeuat
of influence may be achieved with little data iparticu-
lar feature can be subverted sufficiently to createci-
sion node/rule that uses it. However, some messzaye

be classified based on factors such as the wordsno

cluded (eg, “All emails without the word Viagra amet
spam”). Mimicry attacks would need to flip the rsfiy

cance of this feature for the entire dataset, awtdjust
for a localized section of the boundary, if theyniesl to
affect these messages. Of course, this is poswiitte
sufficient data, but it is likely that our upperual of
10% adversary control was not high enough for ltiisl
of impact.

Naive Bayes and AdaBoost

Naive Bayes and AdaBoost displayed continuous degra

dation over the range of adversary control thatested.
For Naive Bayes this probably reflects its uselbfea-
tures for each decision as well as the graduat shihe

overall ratio of spam to ham. AdaBoost degrades co
The contusuo
degradation probably reflects the fact that AdaBsos

tinuously, but at a much slower rate.

ensemble of classifiers is likely to use a largenber of
attributes for each decision, so it is affectedelagh at-

tack message. We do not have a theory as to tlbv

slower rate of degradation, but consider it aneatly
interesting area for future research.

4.4 Senditivity to adversary knowledge

C4.5 and Ripper

Despite their apparent resilience to increasingeeshry
control of the training data, C4.5 and Ripper wearia-
tively more sensitive to the adversary’s level obwl-

edge of the target message. They performed relgtiv

well when the adversary had little (30% or lesspwh

edge of the contents of the target message, buaded
quickly after this point and had almost no sucaogken
the adversary had a very high degree of knowle@deo(
to 90%) of the contents of the message. Thiskisyli
because targeting the relevant attributes madasieeto
shift small, local sections of the decision boundhay

creating small but high-purity leaf nodes (rathbart
having to shift or “pollute” the purity of largenterme-
diate nodes). Because the data is in a high-dimeals
space it is very likely that the decision boundaily be

“close” to any given point in at least one dimensiso
very small shifts can be effective.
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Naive Bayes and AdaBoost

In contrast to C4.5 and Ripper, Naive Bayes appfies
formation about every attribute to every decisiem that

its behavior is affected even when the most relefear
tures for the target message are not known. Homweve
the sheer number of features in use seems to ratace
effectiveness of subverting the especially relevamgs.

In effect, Naive Bayes has no localized decisiokinta
because it assumes that all attributes are independ
while the rectilinear partitioning algorithms arery lo-
cation-aware and more susceptible to local effects.
AdaBoost with decision stumps is as expressiveeas d
sion trees and can capture local impacts, buteinseto

be resilient to detailed adversary knowledge, asfigc
when the percentage of adversary control is lovilgis
may be because the method of weighting the weak-ea
ers gives decision stumps that classify a broaatege of
points correctly a greater weight when voting, tpus-
viding some regularization against localized ovenfj.

45 Interaction between attack parameters

For all classifiers tested, the attacks succee@®8olof
the time when 10% of the training data was corgmbll
and 90% of the contents of the target messages were
known to the adversary, and 0% of the attacks stz
when the attacker controlled only 0.25% of thenira
data and knew only 10% of the message contentss Th
provides us with an interesting range of the comutidms

of parameters that shows how the different classifare
affected by different combinations of adversary tomn
and knowledge.

The results for Naive Bayes and AdaBoost seemdis in
cate a continuous tradeoff between the two attamk p
rameters. In contrast, C4.5 and Ripper seemedeto b
more affected by adversary knowledge, while the per
centage of adversary control seems to have shatp an
perhaps discontinuous effects. Based on the sesudt
see here and the nature of decision trees andasled
algorithms, we consider it likely that if the pemtege of
adversary control were increased beyond 10% wedvoul
find additional sharp rises in the influence of #teack-
ers followed by plateaus, rather than a smooth atkgyr
tion.

5 FutureWork

Additional attacks

There exists a large variety of other attacks captide
systems in general and spam filters in partic@ad ex-
periments evaluating the relative robustness ofouar
classifiers to those attacks would be interestifige at-
tack evaluated in this paper was a causative atback
availability of the system. Other attacks incluplora-
tory attacks to determine the state of the clagsiind
attacks in the integrity of the system (i.e., orttigg
spam past the filter) such as desensitization kdtadn
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addition, other causative attacks on availability pos-
sible. For example, the mimicry attack is not reseeily
the most effective way to target a specific messdge
pending on the particular classifier.

Additional classifiers

The classifiers we chose are classic ones, hestviljied
and in wide use. It is possible that other cléssiion
algorithms are more robust (or less robust) to eshréal
influence, and we currently do not have any mettood
identifying them through static analysis of the aalg
rithms.

It would also be instructive to compare classifiers
from the same family, and to test identical classsf
with different parameters. This might provide dibaial
insight into the question ofthy one particular classifier
performs better or worse than another does.

In particular, we consider the success of AdaBaost
our experiments good reason to focus on enseméage cl
sifiers and determine whether they have some imhere
robustness against mimicry attacks and possiblgroth
causative attacks as well.

Alternative adversary capabilities

In our experiments we assume that the adversaraddn
arbitrary spam-labeled messages to the training. dan
attacker might have other capabilities, such asngdd
arbitrary ham-labeled messages to the training. data
understand this, it is important to realize thangnanti-
spam systems are trained using messages cladsjfiaid
users of the email system, so a spammer couldeceeat
Gmail account (for example), and then send emag-me
sages to this account and mark it as “not spantierd
are obvious countermeasures that could be usetkts i
tify such accounts if they were used heavily, blarge
number of low-volume accounts would be very difficu
to detect, and would give spammers significanuifice
over the anti-spam systeaven if those accounts never
sent a single spam message. The extent to which a
spammer could inflict damage on a spam filter usiig
technique is unclear, and experiments to help dyant
the risk would be valuable.

Other data sets and domains

Data from different domains exhibits different stiures,
so it is possible that the effect of poisoning dsgts from
different domains would produce different resultsf

datasets from different domains exhibit differesdls of
susceptibility to poisoning, it might provide soinsight
into how to identify vulnerable domains or how tndi-

tion data prior to training to make classifiers moobust
against poisoning.

Data preprocessing defenses

For some existing systems, it would be very expensi
change the type of classifier in use, or the paldicclas-
sifier might have been chosen for reasons that eigtw
the risk of being attacked. In these cases, ihiriig de-
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sirable to find defenses that operate by transfognur
conditioning the data. Some existing techniquegpfe-
processing data to improve classifier performanaghm
provide some robustness against some types ofkattac
Some examples worthy of investigation are dimeradion
ity reduction techniques, which might weed out aois
attributes and thus prevent them from being usedtas
tack vectors, and domain-relevant feature transfierm
tions, such as inverse-document frequency for dexa.
These techniques effectively apply heuristics alvaut
data is likely to be useful for learning, thus puizily
limiting the effect of data designed to subvert kisarn-
ing process. It is not clear whether these tealesq
would be effective, or if so whether they would yde
the same benefits for all classifiers, but the piad
benefit, especially to legacy systems, makes itoathw
while area of investigation.

Developing more secure classifiers

Designing new classification algorithms that aresle
vulnerable to attack (to specific attacks or to igho
classes of attacks) would be the ideal solutionséarur-
ing new systems that use classification. Machasen-
ing and classification in particular are alreadydely
used in adversarial environments, and more sedase ¢
sification algorithms would almost certainly havbene-
fit to many of these fields. Also, based on whatkmow
about the benefits of developing secure softwarés i
plausible that algorithms that learn in a way thabbust
against adversarial attacks would also have otkeird
able characteristics. In particular, it seems thate se-
cure classifiers would need to be more robust atjain
noisy data and disruption by outliers at a minimuamcl
these are generally desirable properties in mapicap
tions.

6 Conclusion

Security against manipulative attacks is simply cmn-
sidered in the design of most systems that empkssi
fication or other types of machine learning. Hoemv
we have shown that even when classifiers have aimil
performance on the basic classification task, they
have significantly different susceptibilities tgarticular
attack, and they may have different security caarsie
tions in terms of which adversary capabilities #ne
most likely to be damaging.

Given AdaBoost’s overall success and domination of
each individual scenario, we consider investigatibthe
potential robustness of ensemble classifiers tachtto
be a priority for future research in the securifyna-
chine learning.

It is the position of the authors that the vulndigb
of a learning algorithm to manipulation by an adeey
should be a primary consideration in designingedec-
ing an algorithm for use in any environment whene a
adversary with sufficient capabilities to executeagtack
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is known to exist. However, designing and develgpi
secure adaptive systems is currently a difficutt ancer-
tain task. In addition to the future research cions
described above, an awareness of security isslessne

to machine learning should be integrated into basic
classes and texts on classification, data miningd,aher
machine learning related topics.
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11.1% 11.1% 5.6% 0.0%
72.2% 11.1% 38.9% 11.1%
0.0% 0.0% 0.0% 0.0%
5.6% 5.6% 5.6% 0.0%
16.7% 11.1% 27.8% 5.6%
66.7% 11.1% 77.8% 5.6%
100.0% 11.1% 100.0% 11.1%
0.0% 0.0% 0.0% 0.0%
11.8% 11.8% 11.8% 5.9%
23.5% 11.8% 52.9% 5.9%
76.5% 58.8% 100.0% 5.9%
100.0% 100.0% 100.0% 29.4%
5.6% 11.1% 0.0% 0.0%
5.9% 11.1% 27.8% 5.6%
61.1% 83.3% 83.3% 11.1%
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5.6% 11.1% 11.1% 0.0%
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100.0% 100.0% 100.0% 100.0%
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83.3% 100.0% 88.9% 77.8%
100.0% 100.0% 100.0% 100.0%
100.0% 100.0% 100.0% 100.0%

Figure 3: Full results of attacks for all classifi
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ers and attack scenarios (% of attacks successful)
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Figure 4: Surface plot of results for AdaBoost
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Figure 5: Surface plot of results for Naive Bayes
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Figure 6: Surface plot of results for C4.5
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Figure 7: Surface plot of results for Ripper
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