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Abstract 
In the spam domain, the data mining classifier 

Naïve Bayes has become the standard for use in com-
mercial anti-spam products.  It has therefore received 
much study from the research community, recently in 
terms of its susceptibility to adversarial attack and its 
poor defense against these attacks.  Yet, little work has 
been done to show any sort of comparison of this popular 
classifier against other classifiers.  Determined to find a 
better and more resilient classifier, we compared Naïve 
Bayes against three other classifiers.  Our ensemble 
learning algorithm, AdaBoost, significantly outper-
formed the other classifiers in 29 out of 30 experiments.  
This could potentially drive further work into using en-
semble learners for security in machine learning. 

1 Introduction 
1.1 Overview 
We are interested in the intersection of security and ma-
chine learning.  Specifically, how can an adversary affect 
a machine-learning system?  Current research in this area 
works extensively with spam filters, with an adversary 
who supplies malicious emails to the system.  These sys-
tems ‘learn’ from these new emails, which then affects 
their spam labeling going forward.   

We compare the impact of attacks on classifiers that 
are used in these types of systems to identify relative 
vulnerability or robustness of these classifiers to these 
attacks.   

1.2 The Importance of Security in Ma-
chine Learning 

Many computer systems are developed for use in one 
context, and then are later used in a different one, result-
ing in some mismatches between the assumptions of the 
developer and the reality of the environment.  When the 
transition is from a secure, controlled environment to a 
potentially hostile environment, this mismatch can result 
in significant security failures.   

In the case of machine learning, most classification 
algorithms were developed to learn about passive target 
classes.  When trained on data that contains some data 
that was crafted by an adversary, these algorithms are 
vulnerable to several types of attacks on integrity and 
availability[1].  In fact, controlling as little as 1% of the 
training data is sufficient in some cases[2].    

It may seem odd that someone would use data pro-
vided by an adversary to train a system.  However, for 
some real-world systems, such as systems that detect 
email spam, link spam, money laundering, credit card 
fraud, check fraud, insurance fraud, and other unwanted 
activities, the past actions of adversaries are a primary 
source of training data, and most systems are refreshed 
regularly so that they are always trained on the most re-
cent examples of unwanted behavior.  This provides suf-
ficient influence for an adversary to attempt some at-
tacks.   

2 Background and related work  
2.1 Security in Machine Learning 
A plurality of the directly related work we have found 
has come from Joseph et al at the SecML research group 
(http://radlab.cs.berkeley.edu/wiki/SecML), part of the 
Reliable Adaptive Distributed Systems Laboratory (RAD 
Lab) at the University of California at Berkeley.  Joseph 
et al has directly addressed the existence of the vulner-
ability of adaptive systems in security-sensitive envi-
ronments [1, 3], developed a threat model for adaptive 
spam filters[3], and quantified the extent of data that an 
adversary would need to control in order to execute an 
attack [2], and identified what they consider to be the 
major open problems in the security of adaptive systems 
[4].  In their paper on open problems in this area, they 
name quantifying the influence of an adversary and es-
tablishing bounds on the cost and impact of an attack for 
categories of learners as key problems that should be ad-
dressed by researchers in this area.  Although a formal 
proof of bounds or taxonomy of classifiers with regard to 
security is beyond the scope of this project, we believe 
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that providing some experimental results will help ad-
vance the work toward developing them.   

Several other researchers have developed experimen-
tal results relevant to this question, generally in the form 
of conducting attacks on specific systems.  Most of the 
experimental work seems to have been conducted in the 
spam domain [2, 5, 6] , although at least one researcher 
reported results related to network traffic anomaly detec-
tion [7].  Joseph et al notes that there is currently no (ac-
cepted) theoretical analysis or interpretation of these at-
tacks  

Although Joseph et al seeks to identify the impact of 
adversarial action on learning systems, and possibly to 
prevent it, other researchers have approached the prob-
lem of learning about potentially deceptive adversaries 
by incorporating explicit models of their adversaries into 
their learning algorithms, including explicit models of 
their adversaries’ learning capabilities [8, 9].   

This impasse is the definition of a Nash equilibrium in 
non-cooperative game theory [10].  Many researchers 
dealing with adversarial (especially zero-sum) domains 
have sought to calculate equilibrium strategy sets directly 
and employ the constituent strategies.  This approach is 
by its nature conservative, because a system employing it 
may pass up opportunities to exploit non-optimal oppo-
nents.  It is also often prohibitively expensive to calcu-
late the equilibria of a non-trivial game.   

2.2 The Spam Domain 
Classification algorithms have been widely used for 
spam filtering.  There is considerable work on develop-
ing ways to separate good email (ham) from unsolicited 
junk message (spam) by using classifiers to identify dis-
tinguishing features of the contents of messages.  This is 
the area where we will test our attacks. 

The spam-filtering domain also has considerable work 
on non-adaptive filtering, and on domain-specific chal-
lenges such as recognizing messages embedded in image 
files.  The work to extract meaningful features from ob-
fuscated content (such as dealing with the sextillion+ 
ways to spell “Viagra” so that a human can read it --
http://cockeyed.com/lessons/viagra/viagra.html), and any 
approaches to filtering that are based on non-content fea-
tures (such as analyzing the SMTP path or analyzing the 
user’s social network) are out of the scope of this project. 

Threat model 
The threat model for adaptive spam filters developed by 
Barreno [3] classifies attacks according to whether they 
are Causative or Exploratory, Targeted or Indiscriminate, 
and whether they are aimed at disrupting Integrity or 
Availability.  A Causative attack aims to cause misclassi-
fication of a message or set of messages, whereas an Ex-
ploratory attack aims to determine the classification of a 
message or set of messages.  Attacks on Integrity seek to 
affect or reveal the classification of spam, while attacks 

on Availability seek to affect or reveal the classification 
of ham.   

Adversary capabilities 
The most basic ability of a spammer is to send spam that 
is caught by the filter (or user) and labeled as spam.  
Other capabilities are possible (see section 5.0, Future 
Work), but all of the attacks here rely exclusively on a 
capability of having arbitrary messages classified as 
spam.   

3 Experimental approach 
3.1 Dataset 
The dataset we are using is a set of email messages from 
the Enron Corporation, with each message labeled either 
“spam” or “ham”, that was prepared for the Spam Track 
of the 2005 Text REtrieval Conference (TREC)[11].  
Each email is in its own text file, in its original form.  We 
will first need to preprocess these emails into a matrix 
format that a machine-learning algorithm can understand.   

We treat each email as a bag of words extracted from 
the content of the message.  Network information (such 
as originating IP addresses and other message metadata) 
is excluded from the feature set.   

Preprocessing 
We used a common data-mining tool called Weka[12] to 
train and test the classifiers, as it provides a common in-
terface for all of the target classifiers.  The dataset 
needed to go through a series of steps to be ready for 
processing in Weka.  The original emails were converted 
to a matrix of size n by m, where each row represents an 
email and each column represents a word found in any 
email.  In size, n will be the number of emails we are 
working with, and m is the number of distinct words 
found in all the emails.  The value in each element of the 
matrix is the number of times that the word indicated by 
that column appeared in the message indicated by that 
row. 

Problems/Limitations 
Due to the large size of dataset, some filtering needed to 
take place to allow for reasonable processing times.  We 
first took a random subset of our dataset, keeping the 
proportion of spam to ham emails the same as the full set 
of emails.  We removed any files we believed to have 
attachments by filtering emails of a predetermined size.  
That removed ‘words’ that were actually long streams of 
data in character format.  That helped significantly, but 
we still had too many columns; hundreds of thousands.  
We created a function in Matlab to identify columns 
(words) that were insignificant.  The function counted 
how many rows (emails) had any value of that particular 
word, and if the total fell under a certain threshold, we 
removed it.  This improved our column count signifi-
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cantly.  This resulted in a small yet representative dataset 
that we converted into a Weka format. 

3.2 Attacks 
Attack selection 
In considering the type of attacks we would test, we 
needed to consider a number of factors.  First, we needed 
to know which ones would be tractable within our avail-
able processing time based on both the time required to 
generate attack data and the time required to perform the 
additional train-test cycles.  Second, we want attacks that 
are plausible in our test domain, both because they re-
quire knowledge that the attacker might reasonably be 
expected to know, and because their cost and value to the 
attacker would make them attractive.  The dictionary and 
mimicry attacks require only the knowledge of the gen-
eral words in use, and a probabilistic knowledge of a sin-
gle message (respectively) so these are quite reasonable 
in terms of attacker knowledge.  The cost of carrying out 
the attacks is just the sending of some emails that are la-
beled as spam, which is very inexpensive to the attacker, 
and the value is either the deactivation of the spam filter 
(for dictionary attacks) or the loss of a valuable email 
message (for the mimicry attacks).  We also expect that 
these attacks are different enough that the various algo-
rithms will exhibit different relative degradation rates as 
the percentage of poisoned training data increases.  That 
is, we expect that the vulnerability to these attacks is not 
highly correlated among the algorithms.   

Mimicry attack 
In this attack, the adversary has a target good (ham) 
email it is trying to have misclassified as spam.  This is a 
type of allergy attack in which the target message is 
mimicked as closely as possible.  All or a portion of the 
target email’s content is known, allowing the adversary 
to send copies of that email, again, from a blacklisted IP 
address, forcing the email to be classified as spam.   

To create this attack, we take a ham email that is not 
included in the dataset we are using, and create a number 
of attack emails.  When creating an attack email, each 
word from the target email is included with probability p.  
If it is not included, a random word from the Linux dic-
tionary was included.   

3.3 Target Classifiers 
We tested some basic classifiers (Naïve Bayes, decision 
trees [C4.5], boosted decision stumps, and Ripper) as 
spam filters.  Tests were run both on the existing data (a 
baseline measure) and with an active adversary.  These 
algorithms were chosen because all of them have been 
previously used or proposed for use as spam detection 
algorithms[13], and also because they represent a sam-
pling of different families of classifiers (see below) that 
have different levels of expressiveness and robustness to 

noise.  In addition, all of these algorithms are commonly 
studied and easily understood by a person who is new to 
machine learning.  We hope this will make our experi-
ments accessible to many readers.   

Naïve Bayes 
Naïve Bayes is widely used for spam detection and other 
applications due to its speed, ease of implementation, 
and generally good results.  An example of a simple Na-
ïve Bayes spam filter that is in wide use is SpamBayes.  
Although simple, Seewald found the basic learner in 
SpamBayes to perform better than some more complex, 
specially tuned variations of Naïve Bayes [14].  The sys-
tems judged inferior to SpamBayes by Seewald include 
SpamAssassin, the spam filter is used by the University 
of Minnesota Computer Science Department.   

We were also interested in Naïve Bayes because Nel-
son performed an analysis of the vulnerability of Spam-
Bayes to mimicry attacks [2], and we wanted to include a 
similar classifier as a way of reproducing his results in a 
situation that allowed comparison with other classifiers. 

AdaBoost with Decision Stumps 
We wanted to include at least one classifier based on en-
semble learning, and to stick to very basic classifiers.  
AdaBoost using Decision Stumps as the weak learners is 
a very simple, perhaps simplistic, representative of the 
class of ensemble learners.  More sophisticated boosting 
algorithms and ensemble classifiers exist, but since we 
were hoping to capture a comparison between very basic 
classifiers, we felt this was a good choice. 

C4.5 Decision Tree 
Decision Trees are another type of basic classifier that is 
widely used.  We chose the C4.5 algorithm for building 
the decision trees, rather than a simpler decision tree 
building algorithm such as ID3, because C4.5 deals bet-
ter with real-valued attributes yet is still easy enough to 
understand.  C4.5 also includes some regularization (by 
pruning of the resulting decision tree), and Barreno has 
suggested that various regularizing mechanisms would 
be possible defenses against some attacks [3].   

Ripper 
Ripper is a rule-generating algorithm that is designed to 
be especially well-suited for classification problems with 
a rare class.  Our test data set has roughly balanced 
classes so this strength may not be evident, but we 
wanted a representative of algorithms that work well 
with rare classes in our set of classifiers.  Rule-
generating systems are related to decision trees, but the 
methods used by Ripper and C4.5 to produce the deci-
sion points are quite different. 
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Figure 1:  Attack success against each classifier 
by the percentage of training data controlled by 
the adversary, aggregation of all tests performed 
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Figure 2:  Attack success against each classifier 
by the adversary's percentage chance of guessing 
each token in the target messages 
 
 

4 Experimental Results 
We first review the overall success of the attacks and the 
net performance of each algorithm on our chosen attacks, 
and then later, we will see how the classifiers performed 
differently based on the variables being tested, such as 
percent known of the target email, or percent of data con-
trolled by the adversary.  This provides a useful look at 
the potential strengths and weaknesses of each classifier. 

4.1 Baseline classification accuracy 
Before adding any poisoned data, we ran the classifiers 
on the clean data set to see how effective each one was at 
the underlying classification task, using ten-fold cross 
validation to evaluate the effectiveness of each classifier.  
Although the later attack experiments do not look at the 
impact on overall classification accuracy (only at the 
success or failure of the attack on the target message), 
the base rate of success is important because this would 
be one of the key measures for evaluating the fitness of a 
classifier for any particular task.   

4.2 Overall Performance  
We were able to successfully recreate the findings of the 
Joseph et al research group [1, 3], Our mimicry attack 
was able to fool Naïve Bayes with a very small portion 
of the data controlled, similar to their findings.  This is 
important; we were not sure how their results would 
transfer to a simpler implementation of a Naïve Bayes 
algorithm.  They ran their experiments on a commercial 
product that used NB, while we were running a data min-
ing tool using NB.  In addition, the other classification 
algorithms we ran had similar results.  Our results will be 
useful to the community, as they clearly fit within the 

norms of other experiments while adding value through 
testing these other classifiers. 
 
Classifier % of Attacks 

 Successful 
Baseline 
 Accuracy 

AdaBoost 26.0% 96.51% 
C4.5 48.9% 96.32% 
Naïve Bayes 46.4% 94.70% 
Ripper 44.7% 96.82% 
Grand Total 41.5% 96.09% 

 
It is clear to see that while Naïve Bayes is not the worst 
algorithm for resilience against adversary attack, it likely 
is not the best.  The AdaBoost classifier performed sig-
nificantly better than the rest, implying that it may be 
worth doing a more thorough analysis on ensemble for 
use in this domain.   

We ran 30 different experiments with various combi-
nations of our two variables, percent of target email 
known and percent of data controlled.  Each experiment 
was run on 17 different target emails.  AdaBoost had the 
best average classification performance in 29 of the 30 
experiments, usually with a significant margin.  This is 
substantial, not dominance on a few experiments, or with 
select parameters, but better in almost every experiment.  
These results point to ensemble learning algorithms as 
possible good choices when considering security in ma-
chine learning algorithms. 

4.3 Sensitivity to adversary control 
C4.5 and Ripper 
These two algorithms showed similar vulnerability to 
similar combinations of attack parameters.  This is not 
very surprising since both algorithms are similarly ex-
pressive in terms of the decision boundaries they create.  
Both algorithms create rectilinear partitions of the attrib-
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ute space, and both perform some explicit feature priori-
tization as part of building these boundaries.   

These two classifiers had relatively greater vulnerabil-
ity at low levels of adversary control (less than 1%, see 
Error! Reference source not found.), but then seemed 
to plateau after about 2% of control while AdaBoost and 
Naïve Bayes continued to degrade.  The likely reason for 
this is that these classifiers rely on only a subset of fea-
tures for each decision.  This means that a large amount 
of influence may be achieved with little data if a particu-
lar feature can be subverted sufficiently to create a deci-
sion node/rule that uses it.  However, some messages can 
be classified based on factors such as the words not in-
cluded (eg, “All emails without the word Viagra are not 
spam”).  Mimicry attacks would need to flip the signifi-
cance of this feature for the entire dataset, and not just 
for a localized section of the boundary, if they wanted to 
affect these messages.  Of course, this is possible with 
sufficient data, but it is likely that our upper bound of 
10% adversary control was not high enough for this kind 
of impact.   
Naïve Bayes and AdaBoost 
Naïve Bayes and AdaBoost displayed continuous degra-
dation over the range of adversary control that we tested.  
For Naïve Bayes this probably reflects its use of all fea-
tures for each decision as well as the gradual shift in the 
overall ratio of spam to ham.  AdaBoost degrades con-
tinuously, but at a much slower rate.  The continuous 
degradation probably reflects the fact that AdaBoost’s 
ensemble of classifiers is likely to use a large number of 
attributes for each decision, so it is affected by each at-
tack message.  We do not have a theory as to the overall 
slower rate of degradation, but consider it an extremely 
interesting area for future research.  

4.4 Sensitivity to adversary knowledge 
C4.5 and Ripper 
Despite their apparent resilience to increasing adversary 
control of the training data, C4.5 and Ripper were rela-
tively more sensitive to the adversary’s level of knowl-
edge of the target message.  They performed relatively 
well when the adversary had little (30% or less) knowl-
edge of the contents of the target message, but degraded 
quickly after this point and had almost no success when 
the adversary had a very high degree of knowledge (70% 
to 90%) of the contents of the message.  This is likely 
because targeting the relevant attributes made it easier to 
shift small, local sections of the decision boundary by 
creating small but high-purity leaf nodes (rather than 
having to shift or “pollute” the purity of larger interme-
diate nodes).  Because the data is in a high-dimensional 
space it is very likely that the decision boundary will be 
“close” to any given point in at least one dimension, so 
very small shifts can be effective.   

Naïve Bayes and AdaBoost 
In contrast to C4.5 and Ripper, Naïve Bayes applies in-
formation about every attribute to every decision, so that 
its behavior is affected even when the most relevant fea-
tures for the target message are not known.  However, 
the sheer number of features in use seems to reduce the 
effectiveness of subverting the especially relevant ones.  
In effect, Naïve Bayes has no localized decision making 
because it assumes that all attributes are independent, 
while the rectilinear partitioning algorithms are very lo-
cation-aware and more susceptible to local effects.  
AdaBoost with decision stumps is as expressive as deci-
sion trees and can capture local impacts, but it seems to 
be resilient to detailed adversary knowledge, especially 
when the percentage of adversary control is lower.  This 
may be because the method of weighting the weak learn-
ers gives decision stumps that classify a broader range of 
points correctly a greater weight when voting, thus pro-
viding some regularization against localized overfitting. 

4.5 Interaction between attack parameters 
For all classifiers tested, the attacks succeeded 100% of 
the time when 10% of the training data was controlled 
and 90% of the contents of the target messages were 
known to the adversary, and 0% of the attacks succeeded 
when the attacker controlled only 0.25% of the training 
data and knew only 10% of the message contents.  This 
provides us with an interesting range of the combinations 
of parameters that shows how the different classifiers are 
affected by different combinations of adversary control 
and knowledge. 
The results for Naïve Bayes and AdaBoost seem to indi-
cate a continuous tradeoff between the two attack pa-
rameters.  In contrast, C4.5 and Ripper seemed to be 
more affected by adversary knowledge, while the per-
centage of adversary control seems to have sharp and 
perhaps discontinuous effects.  Based on the results we 
see here and the nature of decision trees and rule-based 
algorithms, we consider it likely that if the percentage of 
adversary control were increased beyond 10% we would 
find additional sharp rises in the influence of the attack-
ers followed by plateaus, rather than a smooth degrada-
tion. 

5 Future Work 
Additional attacks 
There exists a large variety of other attacks on adaptive 
systems in general and spam filters in particular, and ex-
periments evaluating the relative robustness of various 
classifiers to those attacks would be interesting.  The at-
tack evaluated in this paper was a causative attack on 
availability of the system.  Other attacks include explora-
tory attacks to determine the state of the classifier, and 
attacks in the integrity of the system (i.e., on getting 
spam past the filter) such as desensitization attacks.  In 
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addition, other causative attacks on availability are pos-
sible.  For example, the mimicry attack is not necessarily 
the most effective way to target a specific message, de-
pending on the particular classifier. 

Additional classifiers 
The classifiers we chose are classic ones, heavily studied 
and in wide use.  It is possible that other classification 
algorithms are more robust (or less robust) to adversarial 
influence, and we currently do not have any method for 
identifying them through static analysis of the algo-
rithms.   

It would also be instructive to compare classifiers 
from the same family, and to test identical classifiers 
with different parameters.  This might provide additional 
insight into the question of why one particular classifier 
performs better or worse than another does. 

In particular, we consider the success of AdaBoost in 
our experiments good reason to focus on ensemble clas-
sifiers and determine whether they have some inherent 
robustness against mimicry attacks and possibly other 
causative attacks as well. 

Alternative adversary capabilities 
In our experiments we assume that the adversary can add 
arbitrary spam-labeled messages to the training data.  An 
attacker might have other capabilities, such as adding 
arbitrary ham-labeled messages to the training data.  To 
understand this, it is important to realize that many anti-
spam systems are trained using messages classified by all 
users of the email system, so a spammer could create a 
Gmail account (for example), and then send email mes-
sages to this account and mark it as “not spam”.  There 
are obvious countermeasures that could be used to iden-
tify such accounts if they were used heavily, but a large 
number of low-volume accounts would be very difficult 
to detect, and would give spammers significant influence 
over the anti-spam system even if those accounts never 
sent a single spam message.  The extent to which a 
spammer could inflict damage on a spam filter using this 
technique is unclear, and experiments to help quantify 
the risk would be valuable.   

Other data sets and domains 
Data from different domains exhibits different structures, 
so it is possible that the effect of poisoning data sets from 
different domains would produce different results.  If 
datasets from different domains exhibit different levels of 
susceptibility to poisoning, it might provide some insight 
into how to identify vulnerable domains or how to condi-
tion data prior to training to make classifiers more robust 
against poisoning. 

Data preprocessing defenses 
For some existing systems, it would be very expensive to 
change the type of classifier in use, or the particular clas-
sifier might have been chosen for reasons that outweigh 
the risk of being attacked.  In these cases, it might be de-

sirable to find defenses that operate by transforming or 
conditioning the data.  Some existing techniques for pre-
processing data to improve classifier performance might 
provide some robustness against some types of attacks.  
Some examples worthy of investigation are dimensional-
ity reduction techniques, which might weed out noise 
attributes and thus prevent them from being used as at-
tack vectors, and domain-relevant feature transforma-
tions, such as inverse-document frequency for text data.  
These techniques effectively apply heuristics about what 
data is likely to be useful for learning, thus potentially 
limiting the effect of data designed to subvert the learn-
ing process.  It is not clear whether these techniques 
would be effective, or if so whether they would provide 
the same benefits for all classifiers, but the potential 
benefit, especially to legacy systems, makes it a worth-
while area of investigation. 

Developing more secure classifiers 
Designing new classification algorithms that are less 
vulnerable to attack (to specific attacks or to whole 
classes of attacks) would be the ideal solution for secur-
ing new systems that use classification.  Machine learn-
ing and classification in particular are already widely 
used in adversarial environments, and more secure clas-
sification algorithms would almost certainly have a bene-
fit to many of these fields.  Also, based on what we know 
about the benefits of developing secure software, it is 
plausible that algorithms that learn in a way that is robust 
against adversarial attacks would also have other desir-
able characteristics.  In particular, it seems that more se-
cure classifiers would need to be more robust against 
noisy data and disruption by outliers at a minimum, and 
these are generally desirable properties in many applica-
tions. 

6 Conclusion 
Security against manipulative attacks is simply not con-
sidered in the design of most systems that employ classi-
fication or other types of machine learning.  However, 
we have shown that even when classifiers have similar 
performance on the basic classification task, they may 
have significantly different susceptibilities to a particular 
attack, and they may have different security considera-
tions in terms of which adversary capabilities are the 
most likely to be damaging.   

Given AdaBoost’s overall success and domination of 
each individual scenario, we consider investigation of the 
potential robustness of ensemble classifiers to attack to 
be a priority for future research in the security of ma-
chine learning. 

It is the position of the authors that the vulnerability 
of a learning algorithm to manipulation by an adversary 
should be a primary consideration in designing or select-
ing an algorithm for use in any environment where an 
adversary with sufficient capabilities to execute an attack 
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is known to exist.  However, designing and developing 
secure adaptive systems is currently a difficult and uncer-
tain task.  In addition to the future research directions 
described above, an awareness of security issues relevant 
to machine learning should be integrated into basic 
classes and texts on classification, data mining, and other 
machine learning related topics.   
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% Control % Known Ripper NB C4.5 AdaBoost 

10% 0.0% 0.0% 0.0% 0.0% 
30% 5.6% 0.0% 5.6% 0.0% 
50% 5.6% 5.6% 5.6% 0.0% 
70% 11.1% 11.1% 5.6% 0.0% 

0.0025 

90% 72.2% 11.1% 38.9% 11.1% 
10% 0.0% 0.0% 0.0% 0.0% 
30% 5.6% 5.6% 5.6% 0.0% 
50% 16.7% 11.1% 27.8% 5.6% 
70% 66.7% 11.1% 77.8% 5.6% 

0.005 

90% 100.0% 11.1% 100.0% 11.1% 
10% 0.0% 0.0% 0.0% 0.0% 
30% 11.8% 11.8% 11.8% 5.9% 
50% 23.5% 11.8% 52.9% 5.9% 
70% 76.5% 58.8% 100.0% 5.9% 

0.01 

90% 100.0% 100.0% 100.0% 29.4% 
10% 5.6% 11.1% 0.0% 0.0% 
30% 5.9% 11.1% 27.8% 5.6% 
50% 61.1% 83.3% 83.3% 11.1% 
70% 94.4% 100.0% 100.0% 33.3% 

0.02 

90% 100.0% 100.0% 100.0% 88.9% 
10% 5.6% 11.1% 11.1% 0.0% 
30% 5.6% 94.4% 16.7% 11.1% 
50% 55.6% 100.0% 83.3% 55.6% 
70% 100.0% 100.0% 100.0% 100.0% 

0.05 

90% 100.0% 100.0% 100.0% 100.0% 
10% 0.0% 29.4% 5.9% 0.0% 
30% 23.5% 100.0% 16.7% 11.1% 
50% 83.3% 100.0% 88.9% 77.8% 
70% 100.0% 100.0% 100.0% 100.0% 

0.1 

90% 100.0% 100.0% 100.0% 100.0% 
Figure 3:  Full results of attacks for all classifi ers and attack scenarios (% of attacks successful) 
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Figure 4:  Surface plot of results for AdaBoost 
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Figure 5:  Surface plot of results for Naive Bayes 
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Figure 6:  Surface plot of results for C4.5 
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Figure 7:  Surface plot of results for Ripper 
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