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Abstract

Perceptual Bistability refers to the phenomenon of spontaneously switching be-
tween two or more interpretations of an image under continuous viewing. Al-
though switching behavior is increasingly well characterized, the origins remain
elusive. We propose that perceptual switching naturally arises from the brain’s
search for best interpretations while performing Bayesian inference. In particular,
we propose that the brain explores a posterior distribution over image interpreta-
tions at a rapid time scale via a sampling-like process and updates its interpretation
when a sampled interpretation is better than the discounted value of its current in-
terpretation. We formalize the theory, explicitly derive switching rate distributions
and discuss qualitative properties of the theory including the effect of changes in
the posterior distribution on switching rates. Finally, predictions of the theory are
shown to be consistent with measured changes in human switching dynamics to
Necker cube stimuli induced by context.

1 Introduction

Our visual system is remarkably good at producing consistent, crisp percepts of the world around
us, in the process hiding interpretation uncertainty. Perceptual bistability is one of the few circum-
stances where ambiguity in the visual processing is exposed to conscious awareness. Spontaneous
switching of perceptual states frequently occurs during continuously viewing an ambiguous image,
and when a new interpretation of a previously stable stimuli is revealed (as in the sax/girl in fig-
ure 1a), spontaneous switching begins to occur[12]. Moreover, although perceptual switching can
be modulated by conscious effort[15, 9], it cannot be completely controlled.

(a) (b)

Figure 1: Examples of ambiguous figures: (a) can be interpreted as a woman’s face or a saxophone player. (b)
can be interpreted as a cube viewed from two different viewpoints.

Stimuli that produce bistability are characterized by having several distinct interpretations that are
in some sense equally plausible. Given the successes of Bayesian inference as a model of perception
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(for instance [7, 5, 14]), these observations suggest that bistability is intimately connected with mak-
ing perceptual decisions in the presence of a multi-modal posterior distribution, as previously noted
by several authors[2, 17]. However, typical Bayesian models of perceptual inference have no dy-
namics, and probabilistic inference per se provides no reason for spontaneous switching, raising the
possibility that switching stems from idiosyncracies in the brain’s implementation of probabilistic
inference, rather than from general principles.

In fact, most explanations of bistability have been historically rooted in proposals about the nature
of neural processing of visual stimuli, involving low-level visual processes like retinal adaptation
and neural fatigue[10, 9, 16]. However, the abundance of behavioral and brain imaging data that
show high level influences on switching (like intentional control which can produce 3-fold changes
in alternation rate[15]) have revised current views toward neural hypotheses involving combinations
of both sensory and higher order cortical processing[9]. The goal of this paper is to provide a simple
explanation for the origins of bistability based on general principles that can potentially handle both
top-down and bottom-up effects.

2 Basic theory

The basic ideas that constitute our theory are simple and partly form standard assumptions about
perceptual processing. The core assumptions are:

1. Perception performs Bayesian inference by exploring and updating the posterior distribu-
tion across time by a kind of sampling process (e.g. [8]).

2. Conscious percepts result from a decision process that picks the interpretations by finding
sample interpretations with the highest posterior probability (possibly weighted by the cost
of making errors).

3. The results of these decisions and their associated posterior probabilities are stored in mem-
ory until a better interpretation is sampled.

4. The posterior probability associated with the interpretation in memory decays with time.

The intuition behind the model is that most percepts of objects in a scene are built up across a series
of fixations. When an object previously fixated is eccentrically viewed or occluded, the brain should
store the previous interpretation in memory until better data comes along or the memory becomes too
old to be trusted. Finally, the interpretation space required for direct Bayesian inference is too large
for even simple images, but sampling schemes may provide a simple way to perform approximate
inference.

The theory provides a natural interface to interpret both high-level and low-level effects on bista-
bility, because any event that has an impact on the relative heights or positions of the modes in the
posterior can potentially influence durations. For example, patterns of eye fixations have long been
known to influence the dominant percept[9]. Because eye movement events create sudden changes
in image information, it is natural that they should be associated with changes in the dominant
mode. Similarly, control of information via selective attention and changes in decision thresholds
offer concrete loci for intentional effects on bistability.

3 Analysis

To analyze the proposed theory, we need to develop temporal distributions for the maxima of a multi-
modal posterior based on a sampling process and describe circumstances under which a current
sample will produce an interpretation better than the one in memory. We proceed as follows. First
we develop a general approximation to multi-modal posterior distributions that can vary over time,
and analyze the probability that a sample from the posterior are close to maximal. We then describe
how the samples close to the max interact with a sample in memory with decay.

A tractable approximation to a multi-modal distribution can be formed using a mixture of uni-modal
distributions centered at each maxima.

P (θt|D0:t) =
P (Dt|θt)P (θt|D0:t−∆t)

P (Dt|D0:t−∆t)
≈

#maxima
∑

i=1

pi(Dt|θt; θ
∗
t,i)Pi(θ|D0:t−∆t; θ

∗
t,i) (1)



where θt is the vector of unknown parameters (e.g. shape for Necker Cube) at time t, θ∗t,i is the

location of the maxima of the ith mode, Dt is the most recent data, D0:t−∆t is the data history,
and Pi(θ|D0:t−∆t; θ

∗
t,i) is the predictive distribution (prior) for the current data based on recent

experience1.

Near the maxima, the negative log of the uni-modal distributions can be expanded into a second-
order Taylor series:

−Li(θt|Dt) ≈ d2
i + ki (2)

= (θt − θ∗t,i)
T Ii(θ

∗
t,i|D0:t)(θ − θ∗t,i) + 1/2 log(|I−1

i |) + ci (3)

where Ii(θ
∗
t,i|D0:t) = ∂2 log(P (θt|D0:t))

∂θ∂θT |θ∗

t,i
is the observed information matrix and ci =

log
(

P (θ∗t,i|D0:t)
)

represents the effect of the predictive prior on the posterior height at the ith

mode. Thus, samples from a posterior mode will be approximately χ2 distributed near the maxi-
mum with effective degrees of freedom n given by the number of significant eigenvalues of I−1

i .

Essentially n encodes the effective degrees of freedom in interpretation space. 2

3.0.1 Distribution of transition times

We assume that the perceptual interpretation is selected by a decision process that updates the in-
terpretation in memory mθ(t) whenever the posterior probability of the most recent sample both
exceeds a decision threshold and the discounted probability of the sample in memory. Given these
assumptions, we can approximate the probability distribution for update events. Assuming the sam-
pling forms a locally stationary process d2

i (t), update events involving entry into mode i are first
passage times Ti of d2

i (t) below both the minimum of the current memory sample ωt and the deci-
sion threshold ξ:

Ti(ξ, ωt) = min{t : δi
t ≤ min{ξ, ωt}}

where δi
t = d2

i (t) − ki, time t is the duration since the last update event and ωt =
log(P (mθ(t)|D0:t)) is the log posterior of the sample in memory at time t. Let M i

t = inf0≤s≤t δi
s.

The probability of waiting at least t for an update event is related to the minima of the process by
P (Ti(ξ, ωt) < t) = P (M i

t < min{ξ, ωt})This probability can be expressed as:

P (M i
t < min{ξ, ωt}) =

∫ t

0

p(δi
τ < ωt)p(ωt < ξ)P (i|τ)dτ +

∫ t

0

p(δi
τ < ξ) (1 − P (ωt < ξ)) P (i|τ)dτ (4)

where P (i|t) = P (θt ∈ Si) denotes the probability that a sample drawn between times 0 and t is
in the support Si of the ith mode. To generate tractable expressions from equation 4, we make the
following assumptions.

Memory distribution Assume that the memory decay process is slow relative to the sampling
events, and that the decay process can be modeled as a random walk in the interpretation space
mθ(t) = mθ(0) +

∑

0≤τi≤t ǫθ(τi), where τi are sample times, and ǫθ are small disturbances with

zero mean and variance σ we assume to be small. Because variances add, the average effect on the
distance ωt is a linear increase: ωt = ω0 + ρσt, where ρ is the sampling rate. These disturbances
could represent changes in the local of the maxima of the posterior due to the incorporation of new
data, neural noise, or even discounting (note that linearly increasing ωt corresponds to exponential
or multiplicative discounting in probability).

To understand the behavior of this memory process, notice that every mθ(0) must be within distance
ξ of the maximum of the posterior for an update to occur. Due to the properties of extrema of
distributions of χ2 random variables, an mθ(0) will be (in expectation) a characteristic distance

1Because time is critical to our arguments, we assume that the posterior is updated across time (and hence
new data) using a process that resembles Bayesian updating.

2For the Necker cube, the interpretation space can be thought of as the depths of the vertices. A strong
prior assumption that world angles between vertices are close to 90deg produces two dominate modes in the
posterior that correspond to the typical interpretations. Within a mode, the brain must still decide whether the
vertices conform exactly to a cube. Thus for the Necker cube, n might be as high as 8 (one depth value per
vertex) or as low as 1 (all vertices fixed once the front corner depth is determined).
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Figure 2: Examples of cumulative distribution functions of memory update times. Solid curves
are generated by simulating the sampling with decision process described in the text. Dashed lines
represent theoretical curves based on the approximation in equation 6, showing the quality of the
approximation.

µm(ξ) below ξ and for t > 0 drifts with linear dynamics3. This suggests the approximation, p(ωt <
ξ) ≈ δ(µm + ρσt − ωt), which can be formally justified because p(ωt < ξ) will be highly peaked
with respect to the distribution of the sampling process p(δi

τ ). Finally assuming slow drift means
(1 − P (ωt < ξ)) ≈ 0 on the time scale that transitions occur4. Under these assumptions, equation 4
reduces to:

P (M i
t < min{ξ, ωt}) =

∫ t

0

p(δi
τ < ωt)δ(µm + ρσt − ωt)P (i|τ)dτ (5)

≈ P (M i
t < µm + ρσt)P (i) (6)

where P (i) is the average frequency of sampling from the ith mode.

Extrema of the posterior sampling process If the sampling process has no long-range temporal
dependence, then under mild assumptions the distribution of extrema converge in distribution5 to
one of three characteristic forms that depend only on the domain of the random variable[1]. For χ2

samples, the distribution of minima converges to

P (M i
t ≤ b) = 1 − exp(−cNba−1)

where N is the number of samples, c(n) = 2−a+1

Γ(a) , a(n) =
(

n
2

)

. Set N = ρt and let ρ = 1 for

convenience, where ρ is the effective sampling rate, and equation 6 can be written as:

P (Ti < t) = P (M i
t ≤ min{ξ, ωt}) ≈ P (M i

t < µm + σt)P (i) (7)

=
(

1 − exp
(

−c t(µm + σt)a−1
))

P (i) (8)

The probability distribution shows a range of behavior depending on the values of a = n/2 and
µm(ξ). Note that the time scale for switching. In particular, for n > 4 and µm(ξ) relatively small,
the distribution has a gamma-like behavior, where new memory update transitions are suppressed
near recent transitions. For n = 2, or for µm(ξ) large, the above equation reduces to exponential.
This behavior shows the effect of the decision threshold, as without a decision threshold the asymp-
totic behavior of simple sampling schemes will generate approximately exponentially distributed
update event times, as a consequence of extreme value theory. Finally, for n = 1and small µm(ξ),
the distribution becomes Cauchy-like with extremely long tails. See figure 2 for example distribu-
tions. Note that the time scale of events can be arbitrarily controlled by appropriately selecting ρ
(controls the time scale of the sampling process) and σ (controls the time scale of the memory decay
process).

3In the simulations, µm is chosen as the expected value of the set of events below the threshold xi
4Conversely fast drift in the limit means P (ωt < ξ) ≈ 0, which results in transitions entirely determined

by the minima of the sampling process and ξ.
5Corresponds to the limit assertion supb |P (Mt ≥ b) − exp(−λ(b, t)t)| → 0 as t → ∞



Effects of posterior parameters on update events The memory update distributions are effected
primarily by two factors, the log posterior heights and their difference ∆kij = ki − kj , and the
effective number of degrees of freedom per mode n.

Effect of ki, ∆kij The variable ∆kij has possible effects both on the probability that a mode is
sampled, and the temporal distributions. When the modes are strongly peaked (and the
sampling procedure is unbiased) log P (i) ≈ ∆kij . Secondly, ∆kij effectively sets different
thresholds for each mode, because memory update events occur when:

δi
t = d2

i (t) − ki > min{ωt, ξ}

Increasing the effective threshold for mode i makes updates of type i more frequent, and
should drive the temporal dynamics of the dominant mode toward exponential. Finally,
if the posterior becomes more peaked while the threshold remains fixed, the update rates
should increase and the temporal distributions will move toward exponential. If we as-
sume increased viewing time makes the posterior more peaked, then our model predicts the
common finding of increased transition rates with viewing duration.

Effect of n One of the surprising aspects of the theory above is the strong dependence on the effec-
tive number of degrees of freedom. The theory makes a strong prediction that stimuli that
have more interpretation degrees of freedom will have longer durations between transitions,
which appears to be qualitatively true across both rivalry and bistability experiments[3, 18]
(of course, depending how you interpret the number of degrees of freedom).

Relating theory to behavioral data via induced Semi-Markov Renewal Process Assuming that
memory update events involving transitions to the same mode are not perceptually accessible, only
update events that switch modes are potentially measurable. However, the process described above
fits the description of a generator for a semi-Markov renewal process. A semi-Markov renewal
process involves Markov transitions between discrete states i and j determined by a matrix with
entries Pij, coupled with random durations spent in that state sampled from time distributions Fij(t).
The product of these distributions Qij(t) = PijFij(t) is the generator of the process, that describes
the conditional probability of first transition between states i → j in time less than t, given first
entry into state i occurs at time t = 0. In the theory above, Fij(t) = Fii(t) = P (Ti < t), while

Pij = Pjj = P (j)6

The main reason for introducing the notion of a renewal process is that they can be used to express
the relationship between the theoretical distributions and observable quantities. The most commonly
collected data are times between transitions and (possibly contingent) percept frequencies. Here we
present results found in Ross[13]. Let the state s(t) = i refer to when the memory process is in the
support of mode i: mθ(t) ∈ Si at time t. The distribution of first transition times from state s = i
can be expressed formally as a cumulative probability of first transition:

Gij(t) = P (Nj(t) > 0|s(0) = i) = P (Tj < t|s(0) = i)

where Nj(t) is the number of transitions into state j in time <= t, Tj is the time until first memory
update of type j. For two state processes, only G01(t) and G10(t) are measurable. Let P (0), denote
the probability of sampling from mode 0. The relationship between the generating process and the
distribution of first transitions is given by:

G01(t) =

∫ t

0

G01(t − τ)dQ00(τ) + Q01(t) (9)

G01(t) = P (0)

∫ t

0

G01(t − τ)
dP (T0 < τ)

dt
dτ + P (1)P (T0 < t) (10)

which appears only to be solvable numerically for the general form of our memory update transition
functions, however, for the case in which P (T0 < t) is exponential, G01(t) is as well. Moreover,

6The independence relations are a consequence of an assumption of independence in the sampling proce-
dure, and relaxing that assumption can produce state contingencies in Qij(t). Therefore, we do not consider
this to be a prediction of the theory. For example, mild temporal dependence (e.g. MCMC-like sampling
with large steps) can create contingencies in the frequency of sampling from the ith mode that will produce a
non-independent transition matrix Pij = P (θt ∈ Si|θt−ρ∆t ∈ Sj).



for gamma-like distributions, the convolution integral tends to increase the shape parameter, which
means that gamma parameter estimates produced by fitting transition durations will overestimate
the amount of ’memory’ in the process7. Finally note the limiting behavior as P (0) → 0, G01(t) =
P (T0 < t), so that direct measurement of the temporal distributions is possible but only for the
(almost) supressed perceptual state. Similar relationships exist for survival probabilities, defined as
Sij(t) = P (s(t) = j|s(0) = i)

4 Experiments

In this section we investigate simple qualitative predictions of the theory, that biasing perception to-
ward one of the interpretations will produce a coupled set of changes in both percept frequencies and
durations, under the assumption that perceptual biases result from differences in posterior heights .
To bias perception of a bistable stimuli, we had observers view a Necker cube flanked with ’fields of
cubes’ that are perceptually unambiguous and match one of the two percepts (see figure 3). Subjects
are typically biased toward seeing the Necker cube in the “looking down” state (65-70% response
rates), and the context stimuli shown in figure 3a) have little effect on Necker cube reversals. We
found that the looking up context, boosts “looking up” response rates from 30% to 55%.

4.1 Methods

Subject’s perceptual state while viewing the stimuli in fig. 3 were collected using the methods de-
scribed in[11]. Eye movement effects[4] were controlled by having observers focus on a tiny sphere
in the center of the Necker cube, and attention was controlled using catch trials. Base rates for
reversals were established for each observer (18 total) in a training phase. Each observer viewed
100 randomly generated context stimuli and each stimulus was viewed long enough to acquire 10
responses (taking 10-12 sec on average). For ease of notation, we represent the “Looking down”
condition as state 0 and the “Looking Up” as state 1.

(a) An instance of the “Looking down” con-
text with the Necker cube in the middle

(b) An instance of the “Looking up” context
with the Necker cube in the middle

Figure 3: The two figures are examples of the “Looking down” and “Looking up” context conditions.

4.2 Results

We measured the effect of context on estimates of perceptual switching rates, Ri = P (s(t) = i),
first transition durations Gij , and survival probabilities Pii = P (s(t) = i|s(0) = i) by counting
the number of events of each type. Additionally, we fit a semi-Markov renewal process Qij(t) =
PijFij(t) to the data using a sampling based procedure. The procedure is too complex to fully
describe in this paper, so a brief description follows. For ease of sampling, Fij(t) were gamma with
separate parameters for each of the four conditionals {00, 01, 10, 11}, resulting in 10 parameters
overall. The process was fit by iteratively choosing parameter values for Qij(t), simulating response
data and measuring the mismatch between the simulated and human Gij and Pii distributions.

7gamma shape parameters are frequently interpreted as the number of events in some abstract Poisson
process that must occur before transition



The effect of context on Gij and Pii is shown in Fig.4 and Fig.5 for the contexts “Looking Down”
and “Looking Up” respectively. The figures also show the maximum likelihood fitted gamma func-
tions. Testable predictions generated by simulating the memory process described above were ver-
ified, including changes in mean durations of about 2sec, coupling of the duration distributions,
and an increase in the underlying renewal process shape parameters when the percepts are closer to
equally probable.
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Figure 4: Data pooled across subjects for the “Looking Down” context condition. (a) Prob. of first transition
and the survival probability of the “Looking down” percept. (b)Prob. of first transition and conditional sur-
vival probability of the “Looking Up” percept. A semi-Markov renewal process with transition paramters Pij ,
gamma means mij and gamma variances vij was fit to all the data via max. likelihood. The best fit curves are
superimposed on the data.
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Figure 5: Same as figure 4, but for the “Looking Up” context condition.

5 Discussion/Conclusions

Although [2] also presents a theory for average transitions times in bistability based on random pro-
cesses and a multi-modal posterior distribution, their theory is fundamentally different as it derives
switching events from tunneling probabilities that arise from input noise. Moreover, their theory
predicts increasing transition times as the posterior becomes increasingly peaked, exactly opposite
our predictions.



In conclusion, we have presented a novel theory of perceptual bistability based on simple assump-
tions about how the brain makes perceptual decisions. In addition, results from a simple experiment
show that manipulations which change the dominance of a percept produce coupled changes in the
probability of transition events as predicted by theory. However, we do not regard the experiment as
a strong test of the theory. We believe the strength of the theory is that it can make a large set of qual-
itative predictions about the distribution of transition events by coupling transition times to simple
properties of the posterior distribution. Our theory suggests that the basic descriptive model suffi-
cient to capture perceptual bistability is a semi-Markov renewal process, which we showed could
successfully simulate the temporal dynamics of human data for the Necker cube.
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