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Abstract We review the applications of artificial life (ALife),
the creation of synthetic life on computers to study, simulate, and
understand living systems. The definition and features of ALife
are shown by application studies. ALife application fields treated
include robot control, robot manufacturing, practical robots,
computer graphics, natural phenomenon modeling, entertainment,
games, music, economics, Internet, information processing, industrial
design, simulation software, electronics, security, data mining, and
telecommunications. In order to show the status of ALife application
research, this review primarily features a survey of about 180 ALife
application articles rather than a selected representation of a few
articles. Evolutionary computation is the most popular method
for designing such applications, but recently swarm intelligence,
artificial immune network, and agent-based modeling have also
produced results. Applications were initially restricted to the robotics
and computer graphics, but presently, many different applications
in engineering areas are of interest.
1 Introduction
There are two types of modeling approaches for studying natural phenomena: the top-down
approach (involving a complicated, centralized controller that makes decisions based on access to all
aspects of the global state), and the bottom-up approach, which is based on parallel, distributed
networks of relatively simple, low-level agents that simultaneously interact with each other. Most
traditional artificial intelligence (AI) research focuses on the former approach.

However, to obtain the most adaptive and complex behaviors from intelligent applications that
assist humans, such behaviors might be designed using the bottom-up approach. It is difficult, or
even impossible, to model lifelike behaviors using the traditional AI approach. Usually, complex
behaviors such as schooling of fishes, detection of unknown attack patterns, and evolution of
economic markets can be modeled as the local interaction of agents whose decisions are based on
the information about, and that directly affect, only their own local environment. There are many
complex applications, not only in the robotics, computer graphics, and engineering fields, but also in
the educational and artistic fields. It is too tedious and sometimes impossible to design such
applications using the top-down approach.

Artificial life (also known as ALife) is an interdisciplinary study of life and lifelike processes that
uses a synthetic methodology [1]. It complements traditional biological sciences concerned with the
analysis of living organisms and finds the mechanisms of evolutionary processes for automatic
Artificial Life 12: 153–182 (2006)
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design and creation of artifacts. A general property of ALife is that the whole system’s behavior is
represented only indirectly, and arises out of interactions of individuals with each other. In this
context, known as the philosophy of decentralized architecture, we can say that ALife shares important
similarities with some new trends in AI, including connectionism [2], multi-agent AI [3], and
evolutionary computation [4].

According to Bedau [1], there are three branches of ALife. Soft ALife creates simulations or other
purely digital constructions that exhibit lifelike behavior, hard ALife produces hardware implementa-
tions of lifelike systems, and wet ALife synthesizes living systems out of biochemical substances. For
this overview, ALife articles of the soft and hard branches were surveyed, because most articles that
apply to ALife fall under one of those two rubrics.

Scientific terms used in this review include the following. Evolutionary computation (EC) is a
biologically inspired general computational concept that uses genetic algorithms (GAs), evolutionary
strategies (ESs), genetic programming (GP), and evolutionary programming (EP). Interactive
evolutionary computation (IEC) is the technology in which EC optimizes the target systems according
to subjective human evaluation expressed as fitness values for system outputs. Agent-based modeling
(AM) uses multiple agents whose decisions are entirely based on local information in order to
simulate real-world situations. Cellular automata (CAs) are discrete dynamical systems that specify
behavior in terms of a local relation. Ant colony optimization (ACO) is a meta-heuristic that uses
artificial ants to find solutions to difficult combinatorial optimization problems.

The methodologies of ALife are described in Section 2, and an ALife application survey follows
in Section 3. Finally, we discuss the future of ALife application research.
2 Basic Methodologies of ALife

Recently, the concept of emergence has arisen in research that involves nonlinear dynamics, ALife,
complex systems, and behavior-based robotics. Emergence in a system, broadly, is said to refer to
properties or behaviors that cannot easily be predicted from internal properties. Examples of this are
flocking behaviors in simulated birds from a set of three simple steering behaviors [5], patterns in the
game of life [6, pp. 817–850], and the highway pattern displayed by the artificial ant [7].

It is this concept of emergence that highlights the nature of ALife research. Emergence is
exhibited by a collection of interacting entities whose global behaviors cannot be reduced to a simple
aggregate of the individual contributions of the entities. Conventional methods in AI have to struggle
to reveal and explain emergence, because they are generally reductionist. That is, they reduce systems
to constituent subsystems and then study them in isolation (the top-down approach). In contrast,
ALife adopts the bottom-up approach which starts with a collection of entities exhibiting simple and
well-understood behavior and then synthesizes more complex systems. Technologies in ALife
research include CAs, the Lindenmayer system (L-system), GAs, and neural networks. Their rela-
tions are diagrammed in Figure 1.

EC is a model of machine learning derived from the evolution process in nature. There are
several different types of evolutionary computations: GAs, EP, and ESs. They are all population-
based search algorithms. Different representation or encoding schemes and search operators
differentiate ECs. For example, GAs normally use crossover and mutation as search operators,
while EP only uses mutation [8]. GAs, the most popular method, are executed by creating a
population of individuals that are represented by strings. The individuals in the population go
through an evolutionary process in which individuals compete for resources in the environment.
Stronger individuals are more likely to survive and propagate their genetic material to offspring.
Interactive EC is such a technique whose fitness function is replaced by a human user [9]. EC is used
for learning, adaptation, and searching, and there are many hybrid methodologies for synergism.

In agent-based modeling, global behaviors emerge from the local interaction of agents, and the
states of the agents change in response to their neighborhoods’ states. It is assumed that each agent
can decide to learn a new skill and to cooperate with other agents.
Artificial Life Volume 12, Number 1154



Figure 1. Relations of the ALife methodologies (CA = cellular automata, IEC = interactive evolutionary computation, EC =
evolutionary computation, NN = neural network, ACO = ant colony optimization).

A Comprehensive Overview of the Applications of Artificial LifeK. J. Kim and S. B. Cho
Multi-agent systems include methodologies derived from the behavior of insects. More recently,
scientists have been turning to insects for ideas that can be used for heuristics. Ant colony
optimization (ACO) is a meta-heuristic that uses artificial ants to find solutions to difficult
combinatorial optimization problems [13]. Particle swarm optimization is based on the behavior of
bees. Each agent has its own advantages, and a colony of agents produces the optimal solution.
The direction of movement of each agent is determined as the vector sum of directional vectors
for the personal best, global best, and current motion. ACO is a popular method, and has many
applications, including electronics, industrial design, chemical process design, and data mining.
Particle swarm optimization has relatively few applications. A new swarm intelligence algorithm
has been developed by Abbass, based on the haploid-diploid genetic breeding of honeybees
and known as honeybees optimization (HBO), for solving combinatorial optimization problems
[14–17].

The L-system is frequently used to model trees, flowers, feathers, and roots of plants in com-
puter graphics. It is a set of simple grammar rules, which generates complex sentences from
primitive components. Although the rules are simple, the generated objects are very similar to the
real structures.

An NN can be considered as a mapping device between input and output sets. Considerable
literature has described NN-fuzzy, fuzzy-GA, GA-NN, and NN-fuzzy-GA mappings. When trying
to solve a real-world problem with NNs, we are faced with a large variety of learning algorithms
and a vast selection of possible network architectures. Recent theoretical and experimental studies
indicate that we can improve the performance of NNs by considering methods for combining
them.

CAs’ basic function is computation—there is no autonomy. A CA is a population of interacting
cells, each of which is itself a computer (automaton) that can be made to represent many kinds of
complex behaviors by building appropriate rules into it [10–12]. CAs can model ecological systems
or the behavior of insects, and can also be used for image processing and neural network
construction [12]. CAs can consist of a 1D string of cells, a 2D grid, or a 3D solid. Usually the
cells are arranged in a simple rectangular grid. CAs have three essential features: state, neighborhood,
and program. The state is a variable that takes a discrete value for each cell. It can be either a number
or a property. A cell’s neighborhood is the set of cells that it interacts with. In a grid these are normally
the closest cells. The program is the set of rules that define how the state changes in response to the
current state and those of the neighborhood cells [10].
Artificial Life Volume 12, Number 1 155



Figure 2. Statistics of application articles in artificial life by field and year: robotics.
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3 ALife Applications

The first conference on artificial life, in 1989, where the term ‘‘artificial life’’ was coined, gave
recognition to ALife as a field in its own right [18]. Statistics on application articles of ALife are
shown in Figures 2, 3, 4, and 5. In general, two major research streams developed during the 1990s
from the interdisciplinary cooperation of researchers interested in bio-inspired computing. A
practical goal of ALife can be defined as finding a mechanism for an evolutionary process to be
used in the automatic design and creation of artifacts [19], and there are many contributions by
computer science researchers to implement artifacts. Drawing upon some of the computing
techniques inspired by social insects such as ants [20], several mobile-agent-based paradigms were
designed to solve control and routing problems in telecommunications and networking [21]. The
natural immune system is also a source of inspiration for developing intelligent methodologies
Figure 3. Statistics of application articles in artificial life by field and year: graphics.
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Figure 4. Statistics of application articles in artificial life by field and year: social.
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toward problem solving [22]. Neural networks have been widely used in optimization, regression,
and prediction problems.

Figure 6 describes the increase of the number of application articles. This recent rapid increase
is related to similar publications in mechanics, product design, and chemical processes. Figure 7
shows the proportion of each application area. Robot control is the most active research area
in ALife. The robotics, graphics, social, and engineering areas are 22%, 21%, 21%, and 36%,
respectively.

Statistics on application articles about ALife by methodology are shown in Figure 8. Some of the
articles are not counted for the statistics because they are surveys or introductory articles without
technical depth. Also, if the amount of research is relatively small for the specific methodology, the
research is ignored. The figure shows the percentages of methodology usage. EC-related method-
ologies (EC, EC with NN, EC with L-system, and interactive EC) occupy about 50% of the re-
search. Figure 9 shows the portion of the methodologies by categories. Of the robotics research,
Figure 5. Statistics of application articles in artificial life by field and year: engineering.
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Figure 6. The number of application articles by year and application category.
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EC-related methodologies occupy about 80%. Most notably, EC with NNs comprises 50% of all
the research. This means that the hybrid method is the most popular approach for designing
controllers for robots. In graphics, the proportion of EC-related methods is about 50%. It is
remarkable that the methodologies related to L-systems comprise about 43% of the research. The
L-system is the most popular representation for researchers who model natural phenomena such as
growth of plants, feathers, and forests. In the social field (including social science and human-related
applications such as entertainment and music), the agent-based model is dominant, because most
articles in economics use agent-based modeling to simulate real-world economic phenomena. In
engineering, the proportion of EC-related methods is relatively small. Swarm intelligence comprises
34% of the research because of the popularity of ACO.

Statistics on application articles about ALife by methodology and year are shown in Figures 10
and 11. Figure 12 shows that EC-related methods are being used continually, with minor increases,
and that methods other than EC have recently gained interest among researchers.

3.1 Robot Control
Recently, the robotics area has relied heavily on EC for designing controllers. EC with NNs is
especially dominant. This subsection includes evolving controllers, the combination of EC and NNs,
Figure 7. The proportion of each application area.
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coevolution, collective robotics, and CAs for robotics. Basically, designing controllers for robots is
the main interest, but there are many other interesting issues in robotics. These include map building,
planning, and human-robot interaction (HRI). CAs can be used for planning, and coevolution with
humans can be the solution for HRI. Another issue of evolutionary robotics is how to minimize the
difference between simulation results and results in the real world. Evolutionary robotics can be
categorized by the method of evaluation, as depicted in Figure 13.

Most ALife researchers try to obtain synthetic forms of organization inspired by biological
principles of life [23]. Evolutionary robotics is the attempt to develop robots through a self-
organized process based on artificial evolution [24–27]. An initial population of strings, each
encoding the control system (and sometimes the morphology) of a robot, is randomly created and
put in the environment. Each robot is then allowed to act according to a genetically specified
controller, and its performance on various tasks is automatically evaluated. The fittest robots are
allowed to reproduce by generating copies of their genotypes with the addition of changes
introduced by some genetic operators. This process is repeated until a satisfactory specimen is
born. From an engineering point of view, the main advantage of relying on self-organization is that
the designer does not need to divide the desired behavior into simple basic behaviors to be
implemented in separate layers of the robot control system [28].

In fact, it has been demonstrated that training or evolving robots in the real world is possible, but
the number of trials needed to test the system discourages the use of physical robots during the
training period. Miglino et al. proposed an accurate model of particular robot-environment dynamics
by continuing the evolutionary process in the real-world environment for a few generations [29].
Meanwhile, embodied evolution (EE) avoids the pitfalls of the simulate-and-transfer method and
allows the speedup of evaluation by utilizing parallelism [30]. Mataric and Cliff focused on the
problems of evolving controllers for physically embodied and embedded systems that deal with the
noise and uncertainty present in the world [31]. Brooks proposed GP to evolve programs to control
physically embodied mobile robots [32].

Many researchers think that evolving NNs is the most promising approach, for a number of
reasons [33–35]. NNs can easily exploit various forms of learning during their lifetime, and this
learning process may speed up the evolutionary process. The whole evolutionary process may not be
implemented in the real world, due to the high time complexity of the simulation, which causes a
serious gap between simulated and real environments. Kondo et al. tried to overcome the problem
Artificial Life Volume 12, Number 1 159



Figure 9. The proportion of each methodology for each category.
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by incorporating the concept of a dynamic rearrangement function of biological neural networks into
evolutionary robotics [36]. Floreano et al. employed a different approach where synaptic strengths
are not genetically specified and adaptation during life consists of Hebbian synaptic changes. For
each synapse, the genetic string encodes four Hebbian rules, a learning rate, the sign, and the
postsynaptic effect of the traveling signal [37]. Nelson et al. proposed evolutionary training of
artificial NN controllers for competitive team game-playing behaviors by teams of real mobile robots
[38, 39]. Lee and Cho developed a fuzzy logic controller for a mobile robot with a genetic algorithm
in simulation environments [40], which analyzes the behavior of the controller from the perspective
of observational emergence [41] and evolvability [42].

Coevolution (that is, the evolution of two or more competing populations with coupled fitness) has
several features that may potentially enhance the power of adaptation of artificial evolution [43–46]. By
using a combination of commercial off-the-shelf CAD/CAM simulation software and physical simu-
lators constrained to correspond to real physical devices, Pollack et al. have been developing technol-
ogy for the coevolution of body and brain [47]. A hybrid GP-GA framework is presented to evolve
complete robot systems, including controllers and bodies, to achieve fitness-specified tasks [48].

Collective behavior as demonstrated by social insects is a form of decentralized control that may
prove useful in controlling multiple robots [49, 50]. In some species of ants, workers cooperate to
Artificial Life Volume 12, Number 1160



Figure 10. Statistics on application articles in artificial life by methodology and year: EC-related methods.
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retrieve large prey. Usually, one ant finds prey, tries to move it, and, when unsuccessful, recruits
friends through direct contact or chemical marking (pheromone). When a group of ants tries to
move large prey, the ants change position and alignment until the prey can be moved toward the
nest. A robotic implementation of this phenomenon is described in [51]. Groups of robots using
ant-inspired algorithms of decentralized control techniques foraged more efficiently and maintained
higher levels of group energy than single robots [52].

The CA model is a powerful instrument in many applications. Marchese proposed a reactive
path-planning algorithm for a non-holonomic mobile robot on multilayered cellular automata [53].
CAM-Brain is a model to create neural networks based on CA, and finally aims at developing an
artificial brain. The original CAM-Brain model has been modified to solve problems caused by
evolving the model to control a mobile robot [54]. The biological immune system has features such
as self-organization and learning ability. Based on these facts, researchers have been trying to
construct engineering models of the immune system, and apply these to robotics [55, 56]. Meyer has
Figure 11. Statistics on application articles in artificial life by methodologies and year: methods other than EC.
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proposed an integration of several specific mechanisms that underlie the adaptive behaviors of
animals into a coherent function model using biological knowledge [57].

3.2 Robot Manufacturing: Practical Robot
Because most research in the robot control area is conducted in the laboratory, many unsolved
problems have appeared in commercial application. The GOLEM project is the most interesting
example of solving such problems in using a 3D solid printing tool for rapid manufacturing. The
GOLEM project is an attempt to extend evolutionary techniques into the physical world by evolving
diverse electromechanical machines (robots) that can be fabricated automatically [58–60]. To date,
robots are still designed laboriously and constructed by teams of human engineers at great cost. Few
robots are available, because these costs must be absorbed through mass production that is currently
Figure 13. The categorization of evolutionary robotics. The basic idea is from [30].

Artificial Life Volume 12, Number 1162



A Comprehensive Overview of the Applications of Artificial LifeK. J. Kim and S. B. Cho
justified only for toys, weapons, and industrial systems like automatic teller machines. Lipson and
Pollack reported a set of experiments in which simple electromechanical systems evolve to yield
physical locomoting machines [59]. They achieve autonomy of design and construction using
evolution in a limited-universe physical simulation coupled to off-the-shelf rapid manufacturing
technology. Using 3D solid printing, the evolved creatures then replicate automatically into reality,
where they faithfully reproduce the performance of their virtual ancestors [60]. Also, they use a
generative representation, which can reuse components in regular and hierarchical ways, providing a
systematic way to create more complex modules from simpler ones [61].

Some researchers tackle more practical problems. It is still not clear if the evolutionary approach
for building autonomous robots is adequate for real-life problems. A mobile robot has been
successfully trained to keep clear an arena surrounded by walls by locating, recognizing, and grasping
garbage objects and taking them outside the arena. The controller of the robot was evolved in
simulation and then downloaded and tested on the real robot [62]. A decentralized method is
proposed for controlling a homogeneous swarm of autonomous mobile robots that collectively
transport a single palletized load [63]. Mondada et al. have proposed a new robotic concept, called
SWARM-BOT, based on a swarm of small and simple autonomous mobile robots called S-BOTs
[64]. S-BOTs have a particular assembling capability that allows them to connect physically to other
S-BOTs and form a bigger robot entity, the SWARM-BOT. By taking advantage of the collective and
distributed approaches, this concept achieves resistance to failure even in challenging environment
conditions such as rough terrain.

3.3 Computer Graphics
This subsection deals with designing virtual characters, 2D image generation, and animation.
Because these products are difficult to evaluate objectively, interactive evolutionary computation is
used to design them. However, subjective evaluation by each user leads to practical problems such as
fatigue, difficulty in maintaining large populations, and small numbers of generations. To solve these
problems, Lee et al. proposed the direct manipulation method [65]. This allows the user to
manipulate individuals directly instead of using evolutionary operators as an interface to each
individual. In the interactive evolutionary system, the cost of evaluating each individual is relatively
high, and it is difficult to maintain large populations. To solve this problem, Kim and Cho propose a
hybrid genetic algorithm based on clustering, which considerably reduces the number of evaluations
without any loss of performance [66]. The algorithm divides the whole population into several
clusters and evaluates only one representative from each cluster. The fitness values of other
individuals are estimated indirectly from the representative fitness values. Knowledge-based
encoding includes removing impractical solutions, using partial information about the final solution,
focusing on a specific search space, and encoding in a modular manner [67]. Figure 14 shows a
Figure 14. A framework for improving interactive evolutionary computation.
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framework for improving interactive evolutionary computation. Cho and Lee have developed an
image retrieval system based on human preference and emotion by using an interactive GA [83, 84].
It searches the images not only with explicit queries, but also with implicit queries such as ‘‘cheerful
expression’’ and ‘‘gloomy expression.’’ Gritz and Hahn used interactive genetic programming to
automatically derive control programs for the agents [85, 86].

ALife concepts play a central role in the construction of advanced graphics models for image
synthesis, animation, multimedia, and virtual reality [68]. Virtual creatures play an increasingly
important role in computer graphics as special effects and background characters. The artificial
evolution of such creatures potentially offers some relief from the difficult and time-consuming task
of specifying morphologies and behaviors. Additionally, a hybrid of the L-system and evolution is
widely used in computer graphics. Hornby and Pollack have proposed a system that uses L-systems
to encode an EA for creating virtual creatures [69].

Karl Sims has developed a novel system for creating virtual creatures that move and behave in
simulated 3D physical worlds. When simulated evolutions are performed with populations of
competing creatures, interesting and diverse strategies and counter-strategies emerge [70, 71]. The
work of Sims has been extended by many authors [74–76]. Teo and Abbass investigated the use of a
self-adaptive Pareto evolutionary multi-objective approach for evolving the controllers of virtual
embodied organisms [72] and the underlying fitness landscape of the controller’s search space [73].

Gentropy is a genetic programming system that evolves into 2D procedural textures [80]. It
synthesizes textures by combining mathematical and image manipulation functions into formulas.
Most evolutionary art programs are interactive, and require the user to repeatedly choose the best
images from a displayed generation. Gentropy uses an unsupervised approach, where one or more
target texture images are supplied to the system.

Hornby and Pollack have demonstrated the ability of evolving L-systems to design tables [81].
Kato et al. proposed a novel method that enables automatic modeling of virtual cities [82]. The
method makes use of the L-system to generate road networks, and the genetic algorithm to generate
building layouts.

The tradeoff between control and automation is a well-known problem in computer-assisted
character animation. It has been the goal of many researchers to allow the automation of agents
while still allowing the developer to change the actions of the agents. Despite this, most professionals
still use key framing, because the automatic motion control schemes have not allowed for sufficiently
specific control over the agents. Miranda et al. have proposed evolving finite state machines for the
behavioral control of characters [87]. Lim and Thalmann have argued that tinkering with existing
models may be a more practical approach than starting from scratch in some applications of
evolutionary techniques, and they validate this point with respect to setting parameters of a human-
walk model for computer animation [88]. Animation through the numerical simulation of physics-
based graphics models offers unsurpassed realism, but it can be computationally demanding.

While the dynamic nature of typical movie stunts makes them dangerous to perform, it also
makes them attractive candidates for the application of physics-based animation. Faloutsos et al.
created an autonomous virtual stuntman [77]. A comprehensive ALife approach to the realistic
modeling of animals for virtual reality is emerging [78]. An extensive survey of synthetic actors can
be found in [79]. Grzeszczuk et al. proposed the NeuroAnimator, a novel approach to creating
physically realistic animation that exploits NNs [89]. A rich environment from which interesting
strategies can be extracted by evolved creatures is needed, and Parisy and Schlick have proposed a
simulation framework that can be used as a starting point for the development of dynamic
behavioral systems [90].
3.4 Natural Phenomenon Modeling
This subsection deals with CA-based modeling, ecological modeling such as that of fish behavior,
flock behavior modeling and its applications, and applications of L-systems. The usage of L-systems
is relatively large in this area. It has been extended to agricultural modeling such as that of cotton and
Artificial Life Volume 12, Number 1164
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plant-eating insects, and to explaining the evolution of fossils. Because Reynolds’ flocking algorithm
[5] generates realistic simulations of thousands of animals, it is frequently used in movies. A hybrid
of the EA and the L-system, and a hybrid of the EA and Reynolds’ flocking algorithm, are examples
of synergism.

Simple CA models offer methods of incorporating computer modeling in the study of natural
phenomena. Malamud and Turcotte proposed three different CA models: the forest fire, slider block,
and sandpile models [91]. Each of these three models is associated with an important natural hazard
that exhibits similar behavior. The forest-fire model is associated with actual forest fires and wildfires,
the slider-block model with earthquakes, and the sandpile model with landslides. Computational plant
models, or virtual plants, are increasingly seen as useful tools for comprehending complex relationships
between gene function, plant physiology, plant development, and the resulting plant forms [92].

Artificial fish are autonomous agents whose appearance and complicated group interactions are
as faithful as possible to nature’s own. Terzopoulos et al. proposed a bottom-up, computational
approach in which they modeled not just form and superficial appearance, but also the basic physics
of the animal and its environment, the means of locomotion, the perception of its world, and its
behavior [93, 94]. Stephens et al. created artificial fish for real-time interactive virtual worlds aimed at
desktop environments with hardware 3D support [95]. The artificial fish can move, sense, and think.
A high-performance computer simulation of Europe’s largest aquarium lets its human visitors
interact with 25 species and about 1,000 individual creatures and plants [96]. Miller has modeled
legless figures such as snakes and worms as mass-spring systems [97].

The aggregate motion of a flock of birds, a herd of land animals, or a school of fish is a beautiful
and familiar part of the natural world. But this type of complex motion was rarely seen in computer
animation in 1987. Reynolds developed an approach based on simulation as an alternative to scripting
the path of each bird individually [98]. The aggregate motion of the simulated flock is created by a
distributed behavioral model; the birds choose their own courses. Behavioral animation techniques
that are similar to Reynolds’ have been used to create special effects in movies like Batman Returns
(animated flocks of bats), The Lion King (herds of wildebeests), and Mulan (crowd scenes). Oboshi et
al. [99] and Birt and Shaw [100] designed the mechanism of fish-school behavior using EC.

Production systems and L-grammars, as introduced by Prusinkiewicz and Lindenmayer, are very
popular tools for creating images [101, 102]. The theory of L-systems has been mainly used for the
visualization of the development and growth of living organisms like plants, trees, and cells. Jacob
uses evolutionary algorithms for inferring L-systems encoding structures with specified character-
istics [103, 104]. In the Wildwood project, genetic algorithms are applied to a simplified L-system
representation in order to generate ALife-style plants for virtual worlds [105]. Chen et al. used
L-systems for realistic modeling and rendering of feathers and birds [106]. Prusinkiewicz et al.
proposed a combined discrete-continuous model of plant development that integrates L-system-style
productions and differential equations [107]. L-Cotton, an architectural model, captures morpho-
logical development and the emergent pyramidal shape of a cotton plant by expressing the process
using the L-system formalism [108].

Interaction with the environment is a key factor affecting the development of plants and plant
ecosystems. Mech and Prusinkiewicz extended the formalism of L-systems with the constructs
needed to model bidirectional information exchanges between plants and their environment [109].
Hanan et al. modeled insect movement and development of 3D structures of a plant, allowing
physiological processes associated with responses to being damaged by insects [110].

The form of trace fossils results from complex interactions among the organism’s morphology.
Computer-based study of morphologies utilizes L-systems and related methods for the generation of
branching and 3D theoretical morphologies [111].
3.5 Entertainment and Games
Designing AI of computer game players is tedious and knowledge-oriented work. ALife can reduce
the worker’s load by allowing an evolutionary strategy search and realistic modeling of human
Artificial Life Volume 12, Number 1 165
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behavior. Top-level computer programs that are developed by humans need expert knowledge to
tune themselves, but a modern master-level checkers program can design its strategy by coevolving
with other computer programs. Rule-based AI cannot provide users with unexpected behavior
patterns, and thus have trouble keeping their interest. Basically, an evolutionary strategy search does
not use much knowledge. It can also provide unexpected behavior patterns and continuously
upgrade itself. Also, emergent properties of evolutionary algorithms allow game users to play
creatively. From the perspective of optimization, evolutionary algorithms optimize multiple para-
meters of games. Recently, commercially available game software has used evolutionary algorithms
for tuning the software’s performance, and Evolutionary Checkers is now on sale.

The goal of building an autonomous agent is as old as the field of AI itself. The ALife community
initiated a radically different approach to this goal, which focuses on fast, reactive behavior rather
than on knowledge and reasoning, as well as on adaptation and learning. One potential application
area of agent research that has received surprisingly little interest so far is entertainment [112].
Artificial Life Interactive Video Environment (ALIVE) is a virtual environment that allows wireless
full-body interaction between a human participant and a virtual world inhabited by animated
autonomous agents. One of the goals of the ALIVE project is to demonstrate that virtual
environments can offer a more emotional and evocative experience by allowing the participant to
interact with animated characters [113]. An evolutionary algorithm is used to evolve the gait of the
Sony entertainment robot AIBO [114–116]. The aim of the MICROB project (Making Intelligent
Collective Robotics) is to investigate collective phenomena of organization in societies of robots. The
application of a robot soccer team was chosen to investigate the design of robots that can organize
themselves to achieve a collective task [117].

ALife technologies offer a way to build a better and more believable environment for computer
games [118, 119]. Flocking has found its way into some of the more recent game releases. Half-life
and Unreal both use flocking to control the movement of groups of fish, birds, and monsters to
create a more realistic and natural environment. Creatures makes heavy use of a combination of
chemistry-based GAs and NNs to control virtual pets, which learn how to speak, feed themselves,
and interact with the player in a variety of ways [120]. Oidian Systems’ Cloak, Dagger, and DNA is
another game that uses genetic algorithms to produce smarter opponents. Recently, coevolution has
been used to evolve a NN (called Anaconda) that, when coupled with a min-max search, can
evaluate checkerboard positions and play at the level of a human expert [121].
3.6 Music
Music is also difficult to evaluate objectively, so interactive evolutionary computation is frequently
used. This subsection shows how to represent music as gene code and how to automate the
subjective evaluation procedure. It examines an interactive evolutionary system without any
automatic evaluation effort, a system with automated evaluation, and a CA-based music system.
The difference with the interactive evolutionary system, as applied to music, is that there are some
attempts to develop an automated evaluator. The key methodologies for ALife music are interactive
evolutionary computation and cellular automata.

As with most problem-solving activities, musical tasks like composing, arranging, and improvising
involve a great deal of searching. The evolutionary algorithm provides a powerful technique for
searching large, often ill-behaved problem spaces. Interactive evolutionary computation, that is,
evolutionary computation whose fitness function is provided by users, has been applied to music, art,
and design. It is difficult to define the fitness function explicitly in these areas. GenJam is an
interactive genetic algorithm-based model of a novice jazz musician learning to improvise [122].
Tokui and Iba proposed a new approach to music composition, more precisely the composition of
rhythms, by means of interactive evolutionary computation [123]. The main feature of this method is
combining GAs and GP. Unemi designed a support system for musical composition, named
SBEAT3, based on simulated breeding [124, 125]. Each individual in the population is a short
musical section of 16 beats, including 23 parts, 13 solos, 2 chords, and 8 percussions. Jacob used an
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interactive genetic algorithm to produce a set of data filters that identify acceptable material from the
output of a stochastic music generator [126]. Cho applied an interactive genetic algorithm to music
information retrieval [127].

The Vox Populi system is designed to perform a series of sound experiments and eventually to be
used as a tool for algorithmic composition [128]. Objectively defined criteria are used to evaluate the
system’s musical fitness, and a user may interfere in the fitness function through interface controls.
Burton and Vladimirova proposed a means by which NN fitness evaluation can be applied to a GA
that is applied to musical rhythm composition [129]. The GP-MUSIC system [130] is an interactive
system that allows a user to evolve short musical sequences using interactive GP, and its extensions
aim at making the system fully automated. Using this interactive technique, it was possible to
generate pleasant tunes for runs of 20 individuals over 10 generations. As the user is the bottleneck
in these kinds of interactive systems, the system takes rating data from a user’s runs and uses it to
train an NN-based automatic rater, or ‘‘auto rater,’’ which can replace the user in bigger runs. De la
Puente et al. describe how grammatical evolution may be applied to the domain of automatic
composition [131]. Alander compiled an indexed bibliography of GAs in arts and music [132].

Miranda employed cyclic, self-organizing CAs to control a sound synthesizer and used a pattern-
propagation CA to generate musical structures [133, 134]. Wada et al. proposed a novel method of
producing a compressive and completely reproducible description of digital sound data by rule
dynamics of CAs [135].
3.7 Economics
Decentralized market economies are complex adaptive systems, consisting of large numbers of
adaptive agents involved in parallel local interactions. Agent-based computational economics (ACE)
is the study of economies modeled as evolving systems of autonomous interacting agents [136–139].
Tassier and Menczer modeled a labor market that included referral networks using an agent-based
simulation [140]. Agents could maximize their employment satisfaction by allocating resources to
build friendship networks and to adjust search intensity. The multi-agent simulation system SWARM
is employed to simulate and analyze economic concepts [141, 142]. Jennings et al. argued that agent
technology can improve a company’s efficiency by ensuring that businesses’ activities are better
scheduled, executed, monitored, and coordinated [143, 144]. Agent-based design and implementa-
tion philosophy has been used as a prototype for a business process management system for British
Telecom (BT ) [145].

Tsvetovatyy et al. proposed architecture for an agent-based virtual market that includes all the
elements required to simulate a real market [146]. Kephart et al. investigated brokering agents’
dynamic behavior, such as their price-setting mechanisms, in the context of a simple information
filtering economy [147, 148]. An agent-based system simulates changes in predominant coordination
mechanisms [149]. Inoue et al. optimized SCM (supply chain management) with HAL (hyper-
artificial-life) middleware [150], which supports sequential GAs, asynchronous colony GAs,
autonomous immigration GAs, and hyper-ALife algorithms for cluster computing.
3.8 Internet and Information Processing
ALife might come to play an important role in the World Wide Web, both as a source of new
algorithmic paradigms and as a source of inspiration for its future development [151]. Menczer et al.
[152] proposed a model, inspired by evolving agents, and applied it to the problem of retrieving
information from a large, distributed collection of documents. By competing for relevant documents,
agents robustly adapted to their environment and were allocated to efficiently exploit shared
resources. Sheth and Maes evolved a population of personalized information filtering agents to make
a personalized selection of Usenet news messages for a particular user [153]. If an adaptive pool of
antibodies can produce ‘‘intelligent’’ behavior, the power of computation can tackle the problem of
preference matching and recommendation [154, 155]. Chao and Forrest proposed an approach to
building an information immune system that eliminates undesirable information before it reaches the
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user [156]. An artificial immune system detects different user access patterns on Web sites [157].
Ibanez et al. propose applying emergent collective behavior ideas to automatically program Internet
multi-channel radio stations [158]. The proposed model simulates n virtual DJs (one per channel)
playing songs at the same time. Every virtual DJ takes into account the songs played by the other
ones, programming a sequence of songs whose order is also coherent.
3.9 Industrial Design
This subsection is divided into two paragraphs, describing the colony-based approach and the others.
Lucic and Teodorovic proposed applications of artificial bee and fuzzy ant systems in the field of
traffic and transportation engineering [159]. The single-row machine layout problem concerns one of
the most commonly used layout patterns, especially in flexible manufacturing systems. Solimanpur
et al. used an ant algorithm to solve the problem [160]. Traffic congestion has become a major
concern for many cities throughout the world. A colony-based traffic simulation system can provide
helpful tools for engineers to plan traffic systems [161]. In order to solve the problem of the
arrangement of letters on a computer keyboard, an algorithm based on ACO has been developed
and applied [162]. Successful implementation of just-in-time ( JIT ) production systems is very
important to modern manufacturing firms. McMullen used an ACO approach to solve multiple-
objective JIT sequencing problems [163]. Batch processes have always been of considerable
importance in chemical manufacturing due to their flexibility in processing multiple products and
their ability to accommodate diverse operating conditions. Jayaraman et al. used the ACO approach
for the optimal design of batch chemical processes [164]. Abbass et al. proposed a new technique for
constructing programs through ACO using the tree adjunct grammar (TAG) formalism [165].

Kim and Cho developed a more realistic design aid system for women’s clothes by incorporating
domain-specific knowledge into an interactive genetic algorithm [166]. Nishino et al. adopted
interactive evolutionary computation to create 3D geometric models [167]. Yang et al. used a new
emergent colonization algorithm for optimum design of short bearings [168]. In the design of engine
mounts, after specifying the amount of shock-absorber fluid, design parameters can be varied in order
to obtain a desired notch frequency and notch depth. Ahn et al. used a hybrid of a conventional ALife
algorithm with a random taboo search (R-taboo) algorithm to solve that problem [169].
3.10 Simulation Software
Echo is a model of complex adaptive systems formulated by John Holland. It eliminates virtually all
of the physical details of real systems and concentrates on a small set of primitive agent-agent and
agent-environment interactions [170–172]. LEE (Latent Energy Environment ) is both an ALife
model and a software tool to be used for simulations within the framework of that model [173, 174].

Yaeger developed a computer model of living organisms and ecology in PolyWorld [175], which
attempts to bring together all the principal components of real living systems into a single artificial
living system. It synthesizes genetics, physiologies and metabolisms, Hebbian learning in arbitrary
neural networks, visual perception, and primitive behavior. PolyWorld can be downloaded from
http://homepage.mac.com/larryy/larryy/PolyWorld.html.

There have been a number of ecology models based on discrete lattices, but the Gecko system
uses no lattice [176]. Agents have free range in two dimensions, and they compete directly for space.

The MUTANT platform includes a model of a self-adaptive agent, with genetic evolving
capabilities as learning mechanisms and a powerful graphical user interface providing many tools for
both modeling and simulation [177]. Swarm is a multi-agent software platform for the simulation of
complex adaptive systems. Swarm can be obtained from the Web page http://www.swarm.org [178].
3.11 Electronics
Contrary to conventional hardware, where the structure is irreversibly fixed in the design process,
evolvable hardware (EHW) is designed to adapt to changes in task requirements or changes in the
environment through its ability to reconfigure its own hardware structure dynamically and
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autonomously [179, 180]. Higuchi et al. have introduced EHW chips and six applications: an
analog EHW chip for cellular phones, a clock-timing architecture for gigahertz systems, an NN
EHW chip capable of autonomous reconfiguration, a data compression EHW chip for printers, and
a gate-level EHW chip [180–182]. Yao and Higuchi reviewed the status of EHW, discussed its
promises and possible advantages, and presented challenges [183]. Zebulum et al. applied an
evolutionary algorithm based on fixed and variable genotypes in the problem of passive analog
filter design [184]. Two basic methodologies of evolutionary hardware are evolutionary computation
and swarm intelligence.

Very large scale integration (VLSI) circuits, known as developmental explosions during the 1980s,
are often too complex to be designed or analyzed globally. Hence, partitioning lies at the root of
numerous computer-aided design problems. Kuntz et al. used an ant clustering algorithm to solve
that problem [185]. Issacs et al. produced evolvable random number generators (RNGs) that can be
written to hardware using a genetic algorithm to evolve ant colony systems [186].

As in nature, the space of bio-inspired hardware systems can be partitioned along three axes,
phylogeny, ontogeny, and epigenesis (POE), giving rise to a new model. Stauffer et al. briefly
presented three systems based on field-programmable gate arrays (FPGAs), each situated along a
different axis of the POE model [190]. When searching for prey, many predator species exhibit
remarkable behavior: after prey capture, the predators promptly engage in area-restricted search,
probing for successive captures nearby. The strategy is effective for so many species because it
strikes a good balance between the exploitation and the exploration of the search space. Linhares
proposed synthesizing a similar search strategy for the gate matrix layout, an important problem in
VLSI architecture [191]. The predatory search strategy restricts the search to a small area after each
improved solution is found.

Mange et al. proposed the design of highly robust integrated circuits endowed with properties
usually associated with the living world: self-repair and self-replication. The architecture is based on
hierarchical levels of organization (molecule, cell, organism, and population) [192].

Scheuermann et al. [187] proposed a hardware implementation of population-based ACO
(P-ACO) on FPGAs. They demonstrate that a straightforward hardware mapping of the standard
ACO algorithm is not very well suited to implementation of the resources provided by current
commercial FPGA architectures.

Particle swarm optimization is a robust stochastic evolutionary computation technique based on
the movement and intelligence of swarms. Individual particles are accelerated toward the location of
the best solution (the location in parameter space of the best fitness for the entire swarm) and the
location of their own personal best (the location in parameter space of the best fitness for the
individual). Recently, this technique has been successfully applied to antenna design [188]. A self-
structuring antenna (SSA) can arrange itself into a large number of configurations. Coleman et al.
investigated the use of ACO, simulated annealing, and genetic algorithms for finding suitable states
of the SSA [189].
3.12 Security
Recent security incidents and analysis have demonstrated that manual response to such attacks is no
longer feasible. Intrusion detection systems (IDSs) offer techniques for modeling and recognizing
normal and abusive system behavior [193]. Current IDS solutions are overwhelmed by the burden of
capturing and classifying new intrusion patterns. To overcome this problem, a self-adaptive
distributed-agent-based defense immune system based on biological strategies was developed
[194, 195]. Dasgupta and Gonzales proposed a technique inspired by the negative selection
mechanism of the immune system that can detect foreign patterns in the complement space. In
particular, the novel pattern detectors use a genetic search [196]. Aickelin et al. proposed ideas on
creating the next generation IDS based on the latest immunological theories [197]. Immunologists
are increasingly finding fault with traditional self-nonself thinking, and a new danger theory is emerging.
This theory suggests that the immune system reacts to threats based on the correlation of various
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(danger) signals, and it provides a method of grounding the immune response. The aim of their
research is to investigate the correlation of these signals and to translate the theory into the realms of
computer security.

There has been considerable interest in computer viruses since they first appeared in 1981.
Scientists ask if computer viruses are not a form of ALife self-replicating organisms [198]. Similar to
IDSs, other research efforts are aimed at creating computer-virus-immune systems [199–201].

ALife has been applied extensively in the area of defense. Artificial life techniques such as agent-
based models and evolutionary algorithms provide a potentially powerful new approach to
understanding some of the fundamental processes of combat [205]. Ilanchinski introduced two
simple ALife-like ‘‘toy models’’ of land combat called ISAAC (Irreducible Semi-Autonomous
Adaptive Combat) and EINSTein (Enhanced ISAAC Neural Simulation Toolkit ) [202]. MANA
(Map Aware Non-uniform Automata) is a CA-model of conflict that has been developed by the
New Zealand Defence Technology Agency [203]. Yang et al. have attempted to understand the
characteristics and properties of the search space of complex adaptive combat systems [204].
3.13 Data Mining
Ngan et al. introduced a system for discovering medical knowledge by learning Bayesian networks
and rules. Evolutionary computation is used as the search algorithm. The system is applied to real-
life medical databases for limb fracture and scoliosis [206]. Pena-Reyes and Shipper surveyed how
evolutionary algorithms can be applied to solve medical problems, including diagnosis, prognosis,
imaging, signal processing, planning, and scheduling, with an extensive bibliography [207].

The prediction of the 3D structure of proteins is a great challenge both for the difficulty of the
task and for the importance of the problem. Many researchers have tried to predict the structure on
the sole basis of the amino acid sequence. Calabretta et al. used a genetic algorithm to obtain
appropriate matrices of folding potentials, that is, ‘‘forces’’ that drive the folding process to produce
correct tertiary structures [208].

Inferring a gene regulatory network is one of the challenging topics in the field of bioinformatics.
In order to infer network structure effectively, a new approach allows human intervention and
strategic data acquisition in the inference process. Iba and Mimura used interactive EC for inferring
gene regulatory networks using gene expression data from DNA microarrays [209]. Kim and Cho
have proposed an evolutionary neural network that classifies gene expression profiles into normal
and colon cancer cells [210].

Parpinelli et al. proposed an ant colony-based algorithm for data mining called Ant-Miner. The
goal of Ant-Miner is to extract classification rules from data [211]. They compared the performance
of Ant-Miner with CN2, a well-known data mining algorithm for classification, in six public domain
data sets. Shelokar et al. used Ant-Miner to classify chemical process data sets [212]. Liu et al.
presented an improvement to the Ant-Miner [213]. Tsai et al. reported a novel clustering method
(described as ACO with a different favor algorithm), which performs better than the fast SOM +
K-means approach and the genetic K-means algorithm [215]. Abraham and Ramos applied ant
colony clustering to Web usage mining [214]. Lu et al. applied particle swarm optimization to train
the multi-layer perceptrons and to predict pollutant levels (air quality) in Hong Kong [216].
3.14 Telecommunication
ACO is capable of solving various routing and congestion problems in computer networking by
continuously modifying routing tables in response to congestion [217–220]. Denby and Hegarat-
Mascle developed an application of an algorithm that mimics the behavior of ants to routing in a
satellite-based telecommunications network [221].

Location management is a very important and complex problem in today’s mobile environments.
Subrata and Zomaya compared several well-known ALife techniques to gauge their suitability for
solving location management problems [222] and used CAs combined with genetic algorithms to
create an evolving parallel-reporting-cells planning algorithm [223].
Artificial Life Volume 12, Number 1170



A Comprehensive Overview of the Applications of Artificial LifeK. J. Kim and S. B. Cho
4 Conclusion

Results of ALife applications cannot be easily evaluated, because their performance is difficult to
measure objectively. Users’ impressions in applications are the only criterion of success. However,
Evolutionary Checkers can be evaluated using traditional ranking methods and shows master-level
performance; it can defeat most people on the online game site. Successful applications of ALife
have common properties, which can be summarized as follows:

1. Achieving similar behavior to biological creatures. A reason why some applications receive
great interest from the public is that they show similar behavior to biological creatures. For
example, Karl Sims evolved interesting locomotion movements similar to those of animals.
These movements are difficult to invent or build manually [70]. As noted by Sims, the creation
of virtual actors, whether animal, human, or alien, may be limited mainly by our ability to design
them, rather than our ability to satisfy their computational requirements. In [60], some individuals
(simple electromechanical systems) used sliding articulated components to produce crablike
sideways motions. In [5], the animations showing simulated flocks built from Reynolds’ model
seem to correspond to the observer’s intuitive notion of what constitutes flocklike motion.

2. The details of the final results have not been described before experimentation. In traditional engineering
approaches, the final results of applications can be described in advance. By depending on
emergent properties, some applications achieve great success. A genetic language that uses directed
graphs to describe both morphology and behavior defines an unlimited hyperspace of possible
creatures, and a variety of interesting virtual creatures have been shown to emerge [70].

3. Designing without expert knowledge. AI has relied mainly on capturing human expertise in the form of
knowledge or programmed rules of behavior that emulate the behavior of the human expert.
Recently, coevolution has been used to evolve a neural network (called Anaconda) that, when
coupled with a minimax search, can evaluate checkerboard positions and play to the level of a
human expert, as indicated by its rating of 2045 on an international Web site for playing checkers.
The neural network uses only the location, type, and number of pieces on the board as input [121].

4. Interdisciplinary cooperation. ALife is an interdisciplinary study of life and lifelike processes that use a
synthetic methodology [1]. SwarmDevelopmentGroup (SDG)members have different backgrounds,
including systems modeling, oceanography, geography, mathematics, computer science, economics,
chemistry, political science, anthropology, environmental engineering, and ecology. The SDG was
founded in 1999 as a private, not-for-profit organization to support the development of the Swarm
simulation system. They use multi-agent-based simulation to advance the Swarm simulation software
[178]. The group’s success is based on the diverse backgrounds of its members.

5. Huge computational requirements. The evolutionary approach requires huge computational power.
For example, it takes 4 hours to complete a simulation on a 32-processor CM-5 (Thinking
Machines supercomputer) [70]. One hundred generations on a 400-MHz Pentium II require
about two days in evolutionary checkers [121].

6. Evolution based on simple primitive shapes such as box and pipe. In successful applications of ALife, the
primitive shapes of a physical body are the simple box and the pipe. Karl Sims used hexahedron
boxes [70], and Pollack and Lipson constructed complex robot morphologies using a linear
actuator, bar, and ball joint [60]. Though they have built relatively simple morphologies, they have
shown the possibility of an ALife approach to real-world applications.

7. Computer simulation. Most of the successful results use computer simulations [5, 60, 70, 121,
178], but there are a few projects based on real hardware platforms. The latter suffer from very
long evolution time, high cost, and uncertainty. In contrast, computer simulation can minimize the
required time and cost by ignoring the details of the real world. With the growth of virtual worlds
such as the Internet, the influence of computer simulation on users’ lifestyles will increase.
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Because ALife focuses more on synthesizing life than on analyzing it, there are applications in a
wide variety of fields. Usually, an EA is exploited, but some other new methodologies, including
ACO, particle swarm optimization, CAs, and artificial immune networks, can be alternatives. In
computer graphics, the L-system is the dominant method for generating realistic images, and in
industrial design, ACO is the dominant method because it is easily applicable to real-world design
problems. Recently, the use of ACO and artificial immune networks has been growing rapidly
because there is so much interest from the academic community. Special issues have been devoted to
ACO, artificial-immune-network-based intrusion detection systems, and agent-based modeling for
economics by IEEE Transactions on Evolutionary Computation [224–226]. Also, there have been several
international conferences on ACO and the artificial immune system.

ALife techniques have many possibilities, because they can provide methods for generating com-
plex situations with simple rules. They show interesting results in movies, computer graphics,
robotics, and games. Of course, many applications are developed in engineering areas, but the most
successful ones are the those that are evaluated only by humans. This means that surprise, emotional
aspects, naturalism, creativity, and emergence are the key points for the success of the applications
in the domain of ALife. Showing humanlike natural characteristics is a main criterion for the eval-
uation of applications. In this they are very different from traditional applications.

Most applications are still at the laboratory level, but a few of them are already being used
in the real world. Although the emphasis of ALife is on the scientific discovery of the meaning
of life, the outcomes of the research can be fruitful in the real world. ALife provides much
potential for generating real-world applications by reducing tedious human effort. Some keywords
of future applications are ‘‘user-friendly,’’ ‘‘adaptive,’’ ‘‘humanlike,’’ ‘‘personalized,’’ ‘‘emotional,’’
and ‘‘entertaining.’’ Traditional methodologies based on mathematics can make good solutions
for real-world problems. However, people want more advanced or complicated applications
that show interesting and optimized behavior. Nature and life show complex behaviors that are
not easily explainable, but humans provide and analyze solutions for nature modeling. Although
they are not optimized in some situations, they can be adaptive and provide joy to people
by complementing the traditional methodologies. From this perspective, a hybrid of ALife
methodologies and traditional optimization methods may be used in future application design
techniques.
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